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Abstract 

There is a growing sense in the fusion community that an underlying ontology would improve fusion. We explored 
the idea and reported the results of experimentation to ISIF in 2002 and 2003. In 2004 we have continued with 
theory development and experimentation. The experimentation described in this paper involved the development of 
a formal ontology from a data model so that automated processes can reason dynamically, by virtue of onthe 
formal properties of the ontology relationship types. The experimentation has been for a next generation fusion 
architecture that is an open architecture in the well-documented sense that adds an ontology layer for further 
decoupling and coordination of software components. The experimentation has involved rehosting of existing fusion 
algorithms to operate within the ontology and a publish/subscribe architecture. While the experiments to date have 
shown how the components can be made to interoperate at the data level, we believe the architecture will ultimately 
promote or enforce probabilistic interoperability between components providing a fusion open architecture at the 
probabilistic level.  

Keywords: Data Fusion, ontology, semantic modeling, real-time DBMS, embedded DBMS, open architecture, 
fusion architecture, command and control, IDEF5 

1 Introduction 
This paper describes research on an open fusion architecture for Airborne Early Warning [1] systems that require 
extensive automated sensor and data fusion. The goal of this architecture is to provide a foundation for advanced 
fusion algorithms including non-kinematic level 1 fusion, such as multi-source identification, level 2 and 3 complex 
assessments, more broadly scoped Situation Awareness and Battle Management information analysis, and level 4 
process adaptation [2], [3]; few operational systems provide these types and levels of fusion [4]. Advances in these 
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types and levels of fusion are decreasingly limited by processing speed and power, yet increasingly limited instead 
by scale, integration, and interoperability issues. For instance, the complexity of the input data for even level 1 
target ID processing is staggering -- a priori sources are difficult to manage, to groom for automated processing, and 
to account for in a mathematically rigorous algorithm set.  

We are researching an ontology-based fusion architecture as a way to make it easier to plug in new algorithms that 
access more types of information. We believe this architecture will support increased automation and higher quality 
data fusion through enforced integration and integrity of data – thus allowing advanced mechanisms, such as 
ontology-based inference, as well as the ability to execute multiple kinds of fusion algorithms that interoperate 
autonomously, yet synergistically. In this paper we describe experiments we have conducted  on this architecture.  

2 Goals of Ontology-Based Fusion 
An ontology is simply a model of the world. In Philosophy, the term refers to a model of the entire world, a 
systematic account of existence. In artificial intelligence (AI), ontology refers to a model of some part of the world 
– some domain, or area of interest. In AI, we require an explicit formal specification of how to represent the objects, 
concepts and other entities that are assumed to exist in some area of interest and the relationships that hold among 
them. There is a very close correspondence between the military concept of a Common Operating Picture [5] and 
the concept of ontology in AI. They both refer to the way we understand and thus reason about a situation. Military 
commanders, like intelligent agents, reason better if they have a shared, accurate, and complete understanding of the 
situation on the ground. In AI systems, the only things that "exist" are things which can be represented. When the 
knowledge about a domain is represented in a declarative language, the set of objects that can be represented is 
called the universe of discourse. We can describe the ontology of a program by defining a set of representational 
terms. Definitions associate the names of entities in the universe of discourse (e.g. classes, relations, functions, or 
other objects) with human-readable text describing what the names mean and formal axioms that constrain the 
interpretation and well-formed use of these terms. Formally, an ontology is the statement of a logical theory.  

Ontologies are of interest to fusion researchers and developers [6] because it defines the rules by which the fusion 
algorithms must operate. This can support proper behavior of a specific fusion algorithm and can enable the proper 
interaction of multiple algorithms. It can also serve as a data exchange conduit between algorithms and data sources 
– sensors, a-priori, and others. There seems to be many diverse perceived benefits of an ontology amongst fusion 
researchers and developers. The benefits we understand are shown in Table 1. The ones that have guided our work 
can be categorized as to the time-frame of believed benefit. That is, some benefits we believe accrue early to the 
fusion system once the technology is injected; others later, and others much further downstream as the ontology 
matures and as fusion algorithms are developed that can exploit it. While beyond the scope of this paper to discuss 
each of these in detail, some brief discussions of the believed benefits follows. 

• Inadequate prior knowledge utilization: Good analysts make use of enormous amounts of prior knowledge 
when trying to understand current information from diverse sensors and sources. In order for automated 
systems to support utilization of prior knowledge, that information must be available to the system in a 
standard, machine-readable format  

• Information scope brittleness and shortfalls. Most fusion algorithms, and virtually all applied fusion 
algorithms, deal with a  narrow scope of information. Powerful inferential reasoning generally builds on widely 
divergent types of information that combine to generate a consistent understanding of the situation. 

• Insufficient exploitation of weak and indirect evidence. In many cases, an analyst’s assessment of a situation is 
not based on one single definitive piece of information, but on an overarching assessment of many smaller 
indicators, any one of which would be inconclusive – and many of which may be quite indirect. In order for 
automated systems to exploit weak and indirect evidence, they must recognize and accumulate relevant bits of 
information and update assessed probabilities based on the evolving weight of evidence. Inference network 
techniques provide a way to cope with massive amounts of interrelated variables via the Markov construction 
of the network that explicates probabilistic and causal dependencies. Between the class structure, properties, 
and inter-relationships of the ontology and the casual and correlated representations in the inference network, 
there is much opportunity for advances in intelligent computing.  



Table 1. Some Possible Benefits of Ontologies in Fusion 

Benefit Time-
Frame

Common data exchange amongst fusion 
algorithms and data sources near 

Implementation of referential integrity, 
datatype, and valid values near 

Maintenance of multiple hypotheses in a 
uniform manner mid 

Pedigree source and temporal tracking mid 
Software open-architecture publish / subscribe 
invocation method mid 

Relationship type rules mid 
Autonomous interoperation of fusion 
algorithms mid 

Inadequate prior knowledge utilization mid 
Weak evidence accumulation and interaction.  far 
Automated reasoning in support of the fusion 
process far 

Information scope brittleness and shortfalls far 

3 Ontology Modeling 
For this project, we needed to model an ontology for command and control that can be implemented and executed in 
a computer system, that is scalable to the broad scope of command and control, and that is based on domain 
expertise . We needed it to be implementable in a computer system in the sense that the concepts, rules, and other 
aspects of the ontology are imparted to the computer program in a way that it executes upon them. To contrast, in a 
typical database schema, the definitions of entities, attributes, relationships, and valid values are for human 
discussion and understanding only; the DBMS receives and operates only upon the datatypes, the relationship 
cardinalites, NULL rules, valid value lists, and so forth. That is, very little of what we perceive as the ‘semantics’ is 
actually executable by the machine. Our aim in the ontology modeling is to impart additional semantics to the 
machine in a way that is executable. In this section we briefly review how we are going about this. There are some 
more details in [7]. 

3.1 Object-Oriented Entity-Relationship Models 
One of the more detailed and rigorous entity-relationship modeling standards, IDEF1X [8], draws primarily on three 
foundations, specifically Chen’s Entity Relationship (ER) model [9] Codd’s Relational model [10], and Smith’s 
Aggregation/Generalization model [11]. The original models by Chen and Codd were shown to be mathematically 
correct and implementable. The extensions by Smith support abstraction modeling akin to object class hierarchies in 
object-oriented database designs [12] Abstraction is essential in ontology modeling. It is simple and natural for a 
human fusion expert to see corresponding elements from intelligence and track databases as imperfect reflections of 
a single entity – but viewed from two perspectives. It is not straightforward for traditional fusion software to make 
this sort of abstraction-derived inference. The lack of an abstraction layer can cause data integrity problems, allow 
inconsistent business rules, and overly complex processing logic. Multi-tiered relationships allow explicit 
representation of abstraction. 



An example of the use of the abstraction modeling in IDEF1X is the C2 Information Exchange Data Model 
(C2IEDM), a NATO standard data model for command and control [13]. A very high-level overview we developed 
of C2IEDM is shown in Figure 1. Even this overview figure shows extensive object class hierarchies. These provide 
compactness and extensibility -- compactness because common properties do not have to be repeated and 
extensibility because new data elements can add new properties to those from their superclass. We think of models 
such as this as Object-Oriented Entity-Relationship (OOER) models that combine the strengths of both modeling 
techniques. 

3.1.1 Data Model Extensions for Fusion 
We are extending the original C2IEDM model in several ways to allow multiple hypotheses consideration, 
increased quantitative precision, full temporal specification, uncertainty representation, and pedigree as described 
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Figure 1. Our C2IEDM Conceptual Overview 



briefly in the following subparagraphs. 

3.1.2 Uncertainty handling 
We explicitly represent uncertainty to enable machine reasoning about information, beliefs, and uncertainty 
parameters derived from various fusion engines. Uniquely, this approach addresses one of the most difficult issues 
in achieving situation awareness, that is, real-time fusion of (sometimes inconsistent) information from disparate 
sensors and sources. 

3.1.3 Precision 
The model did not support precision tracking and timing so it was necessary to add a 9-state kinematics, and an 
additional attribute for sub-second time maintenance. We have not yet added body orientation (e.g., direction 
cosines) and body axis displacements and rates (e.g., roll, pitch, yaw and their rates) but these would fit well as 
amplifiers on RELATIVE-POINT in the same manner as kinematic-state. These data elements will be important for 
ballistic missile tracking. It will probably be necessary to add uncertainty representations for orientation and 
navigation because of the importance of accurate and precise estimation for this type of application. 

3.1.4 Temporal and Multi-Belief Dimensions 
The C2IEDM has a data  structure for maintenance of data source called REPORTING-DATA. In order to support 
both multi-beliefs (e.g., local and remote tracking) and maintenance of track history all that had to be done was 
move the REPORTING-DATA foreign key to be part of the primary key. 

3.1.5 Pedigree 
We extended the model to enable explicit representation of information pedigree - including source, certainty, and 
lineage. These extensions incorporate and build on parts of a metadata model (metamodel) developed by the Joint 
Strike Fighter (JSF) program to manage information products supporting modeling and simulation [14]. 

3.2 Relationship Modeling (IDEF5) 
An important difference between data models and ontologies is the formalization of the specified relations. In data 
models, the relations (is-specified-by, contains, is-part-of, etc.) are not formally specified. They are intended to be 
understood by humans and are not sufficiently defined so as to be understood by machines for purposes of inference 
routine execution. In ontologies, the relations are formally and axiomatically specified. They provide the basis for 
machines to generate inferences based on First Order Predicate and Modal Logics. 

IDEF5 [15] draws on additional foundations, including Semantic Nets [16, 17], Situation Theory [18], Set Theory, 
FOPL [19], and the Modal Logics [20]. It models concepts and conceptual relations as ontologies, and thus provides 
an abstract level of representation for describing a domain in a manner which closely reflects the human 
conceptualization of that domain. Ontologies are defined under IDEF5 in 4 steps. First, we provide an inventory of 
the kind of objects that exist within a given domain according to the best sources of information. Second, for each 
kind of object we provide a description of the properties that are common to all and only instances of that kind. 
Third, we characterize the particular objects that in fact instantiate the kinds within the domain. Finally, we provide 
an inventory of the relations that exist within the domain between and within kinds of objects. 

For example, “Part-of,” a commonly used relation, is inherently too ambiguous for machine processing. Under 
IDEF5, the meronymic relation (part-of) is formally defined as 6 different kinds of part-of relations. These include 
Physical-Part-Of (place-within, component-of, stuff-of, portion-of) and Conceptual-Part-Of (member-of, activity-
within). Each of the six is associated with a set of axioms that include FOP and Modal logical operations that can be 
performed on entities that are related. Thus a machine can conduct logical operations on meronymic relations. 



IDEF5 employs two languages. The schematic language, using graphical symbols to express ontological 
information, is very similar to IDEF1X. The elaboration language enables the expression of axioms. The core of the 
IDEF5 Elaboration Language is based on the KIF [21], which includes a predefined library of relation constants. 
The elaboration language contains all definitions and characterizing axioms in a structured text language with the 
full expressive power of first-order logic and set theory. It can express almost any condition, relation, or fact needed 
to express any given kind of thing, property, relation, or process found in a domain. The syntax of the language uses 
a prefix notation and parentheses to delimit expressions. The alphabet for the language consists of the standard 
alphanumeric and punctuation characters.  

The notion of a word is taken as a primitive of the IDEF5 Elaboration Language. A sentence in the language is 
composed of operators, constants, and, possibly, variables. The IDEF5 Elaboration Language supports three types 
of expressions: terms, definitions, and sentences. Terms are used to denote objects. A definition is a type of 
expression used to define an individual, relation, or function constant. A definition can be complete or partial. A 
sentence in the IDEF5 Elaboration Language expresses some fact about the constants in the ontology. There are 
seven types of sentences in the language. There are eleven categories of IDEF5-specific sentences, each category 
corresponding to a concept in the IDEF5 method. The IDEF5 elaboration language also includes relation constants, 
which are predefined in the language and, hence, can be used in sentences. 

We are new strengthening our fusion ontology model from IDEF1X specification to IDEF5 specification - 
essentially turning it into a fusion ontology modeling language to enable machine understanding and automated 
reasoning.  

4 Experiments with Fusion Algorithms 
4.1 Real-Time Database 
We implemented the model in a real-time database for data storage and retrieval. For these experiments we used 
TimesTen™ [22]. It provides database software for real-time event processing – a fundamental requirement of time-
critical applications used in command and control systems. TimesTen™ is a re-write of ANSI SQL to optimize for 
RAM versus disk-based virtual memory access. It supports open architecture with ANSI SQL compliance, binding 
to common programming tools, and an interface to offline DBMS’ such as Oracle. We reported some early 
experimental results on TimeTen’s performance for real-time command and control in [23]. 



4.2 Tracking Filters 
We conducted two tracking filter experiments. In both of these the subset of the ontology used was very small, the 
purpose of the experiments being to see what was involved in conforming existing software to the architecture. The 
ontology fragment implemented in the embedded DBMS is as shown in Figure 2. In these experiments, a simple 
simulator generates radar processor output reports in the form of Range and Azimuth data. As these records are 
added to the RECEIVER-OUTPUT table, the tracker filters are triggered to execute. Note that in both the 
RECEIVER-OUTPUT and KINEMATIC-STATE tables, records are never over written but are only added, by 
virtue of the design which placed time as an identifying key attribute, part of a composite key. Although many 
fusion systems today do not maintain this temporal dimension, there are benefits that may be worth considering now 
that computing resources allow the option. For the purposes of the experiments, the temporal dimension allowed us 
to look at the tables after the scenario runs. 

Because the code we had had been previously used in a test environment to develop the existing actual code, it had 
file loaders and outputters at the beginning and end that we had to delete. Then we had to build a ‘wrapper’ that 
would respond to the DBMS trigger and translate the data from the ontology to the format the legacy code required. 
This architectural “framework” [24] is shown in Figure 3. The results were that this worked; the simulator filled the 
RECEIVER-OUTPUT table and as each record was added, it triggered the wrapper which executed the filter’s code 
which the wrapper then formatted into the KINEMATIC\-STATE and KINEMATIC-COVARIANCE tables. 

 
Figure 2. Ontology Fragment Used for Tracking Filter Experiments 



4.3 Association 
The ontology fragment used for these experiments is shown in Figure 4. The assignment matrix is maintained in the 

OBJECT-ITEM-ASSOCIATION structure which supports 
showing a relationship between two OBJECT-ITEM 
instances, in this case with an association type code of 
“correlated”. The association confidence value, the same 
attribute used for hypothesis confidence throughout the 
ontology, was used to maintain the cost or probability, 
depending on the algorithm. In a final architecture, a 
standard confidence value would be defined and all 
interacting algorithms would have to have their wrappers do 
any de-biasing or translation of correlation scores, costs, etc. 
to the confidence value standard.  

The JVC [25] code provided by Dr. Oliver Drummond 
(many years ago) had file readers and outputters on the ends 
that had to be eliminated. However, from that point on, the 
conformance was simply a matter of data translation since 
all the persistent data was maintained in the ontology. A data 
translation specification was developed, to go back and forth 
between the application-dependent data structures and the 
ontology fragment. Note that the sparse matrix handling in 
the original code is handled very elegantly by the associative 
data structure in the ontology and yet achieves the same 
goal, that of storing only the sparse feasible costs and not the 
entire matrix. The difference is that the DBMS can lookup 
the sparse entries given the indices because it uses state of 
the art hashing and indexing to lookup all data. In effect, the 
DBMS has sparse matrix handling as a special case of its 
more general handling of all sorts of lookups. 

The cost matrix inputs were generated using the two 
trackers in the prior experiments. The RECEIVER-
OUTPUTs had bias applied to simulate navigation 
and sensor errors typical of gridlock and sensor data 
registration seen in the field, that is, lat, long, and 
azimuth offsets and a multiplicative range scale 
factor. In addition, a probability of detection was 
applied based on a hypothetical range to target and a 
random function. As well, the biases were randomly 
varied. Again, this experiment was a success, as the 
code was conformed to run against the ontology.  

At this point it is worth again noting the temporal 
dimension of the ontology since now it allows for 
backtracking of reasons-why for correlation 
decisions. This can be very important in aberrancy 
removal. While the goal is to have as few correlation 
aberrancies as possible, they are inevitable. The 
temporal dimension could provide a more elegant 
way to handle than some of the complex aberrancy 
removal logics we have seen. Because of the known 
complexity, some systems make a design decision to 
not attempt to re-do fusion decisions and estimates 
and instead just tolerate data contaminations known 
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Figure 3. Fusion Architecture Wrapper Framework 

is-the-subject-of

is-the-source-for /
is-asserted-by

1

is-the-object-of

is-the-reporting-agent-for /
is-reported-by

is-the-source-of

OBJECT-ITEM-ASSOCIATION
reporting-data-id
object-item-association-object-object-item-id
object-object-item-reporting-data-id
object-item-association-subject-object-item-id
subject-object-item-reporting-data-id
object-item-association-index
hypothesis-index
object-item-association-category-code
object-item-association-subcategory-code
confidence value

OBJECT-ITEM
object-item-id
reporting-data-id

object-item-category-code
object-item-name
object-item-alternate-identification-text

REPORTING-DATA
reporting-data-id

reporting-data-accuracy-code
reporting-data-category-code
reporting-data-counting-indicator-code
reporting-data-credibility-code
reporting-data-reliability-code
reporting-data-reporting-date
reporting-data-reporting-time
reporting-data-source-type-code
reporting-data-timing-category-code
reporting-data-precise-reporting-time
reporting-data-reporting-organisation-id
organisation-reporting-data-id
reference-id

ORGANISATION
organisation-id
organisation-reporting-data-id

organisation-category-code
organisation-nickname-name

“local” and 
“remote” tracks 
are in this table

“local” and 
“remote” tracks 
are in this table

The correlation 
scores (e.g., χ2 )  
and correlation 
decisions are in 
this table 

The correlation 
scores (e.g., χ2 )  
and correlation 
decisions are in 
this table 

The source 
pointer and 
report time is in 
this table.

The source 
pointer and 
report time is in 
this table.

The sources (e.g., 
JU/PU, ESM SSI, 
Radar SSI) are in 

this table 

The sources (e.g., 
JU/PU, ESM SSI, 
Radar SSI) are in 

this table 

is-the-subject-of

is-the-source-for /
is-asserted-by

1

is-the-object-of

is-the-reporting-agent-for /
is-reported-by

is-the-source-of

OBJECT-ITEM-ASSOCIATION
reporting-data-id
object-item-association-object-object-item-id
object-object-item-reporting-data-id
object-item-association-subject-object-item-id
subject-object-item-reporting-data-id
object-item-association-index
hypothesis-index
object-item-association-category-code
object-item-association-subcategory-code
confidence value

OBJECT-ITEM
object-item-id
reporting-data-id

object-item-category-code
object-item-name
object-item-alternate-identification-text

REPORTING-DATA
reporting-data-id

reporting-data-accuracy-code
reporting-data-category-code
reporting-data-counting-indicator-code
reporting-data-credibility-code
reporting-data-reliability-code
reporting-data-reporting-date
reporting-data-reporting-time
reporting-data-source-type-code
reporting-data-timing-category-code
reporting-data-precise-reporting-time
reporting-data-reporting-organisation-id
organisation-reporting-data-id
reference-id

ORGANISATION
organisation-id
organisation-reporting-data-id

organisation-category-code
organisation-nickname-name

“local” and 
“remote” tracks 
are in this table

“local” and 
“remote” tracks 
are in this table

The correlation 
scores (e.g., χ2 )  
and correlation 
decisions are in 
this table 

The correlation 
scores (e.g., χ2 )  
and correlation 
decisions are in 
this table 

The source 
pointer and 
report time is in 
this table.

The source 
pointer and 
report time is in 
this table.

The sources (e.g., 
JU/PU, ESM SSI, 
Radar SSI) are in 

this table 

The sources (e.g., 
JU/PU, ESM SSI, 
Radar SSI) are in 

this table 

 
Figure 4. Ontology Fragment for Assignment Algorithm 

Experiments 



to be present when decorrelations or change correlation decisions occur. 

4.4 Classification 
The purpose of this experiment is to see what is involved in inferring across several nodes in the ontology to 
perform ESM classification. The fusion process is that an ESM track is provided with basic classical parameters:  
From this information, an estimate of the type of platform is desired. The fusion inference is find the most likely 
type of platform to have caused this signal measurement to occur, the causality starting with the platform which 
causes its radar to operate which, in turn, causes the signal which, in turn, causes the ESM receiver to excite which 
causes the measurement to be sent to the fusion processor. Note that this causal analyses and modeling invites a 
more careful interpretation of the data, e.g., the biases in the measurement caused by our receiver [26]. However, for 
this experiment, we simplified and used the model subview shown in Figure 5. The full inference algorithm code 
involves consideration of factors such as antenna gain and beamwiths, effective radiated power, and propagation 
conditions. 

For this experiment we created an a-priori database that approximated the ambiguity characteristics of a real 
classification system; around 40,000 modes, 4,000 emitters, and 70,000 platforms. This experiment evidenced some 
challenges to the architecture in that, unlike the previous experiments described, marshalling the data was 
impractical due to the massive quantities that would have to be repeatedly marshaled and loaded into complex data 
structures. That is because there can be many classification candidates input to the algorithms if there is much 
ambiguity in the input report. The solution was to instead create an object layer that the algorithms could interact 
with directly that would map to the ontology. Its mechanism is based on light-weight classes bound to a database 
[27]. Triggers ensure the persistent objects remain in synchronization efficiently. Easily customizable, it can be 
adapted to any data structure. This architecture presents yet another challenge and that is error handling when the 
algorithm tries to do something the broker considers illegal. While correct from an overall system point of view to 
maintain the integrity of the database, it does mean error handling has to be added to legacy code. The tension 
between database integrity and easy access is a long standing challenge in the use of DBMS and other brokers in 
embedded systems  and our approach, one of many, is simply another step towards what may someday be a more 
standard one. 

5 Future Work 
The next phase of this project is to take the initial research further into implementation. This will be with 
experimentation with existing and new technology software elements running against the next generation 
architecture in the avionics integration lab. We will be conducting experiments with software elements planned for 

 
Figure 5. Classification Experiment Ontology Fragment 



the aircraft to mature the fusion architecture in preparation for full scale development. There will be ontology 
extensions, there will be adjustments to the publish / subscribe mechanisms, and implementation in mission system 
at the integration lab. Also, as early results from the mathematical formulation of the ontology-based fusion theory 
are nearing maturity, we plan on performing experimentation in conjunction with the aircraft’s mission system. The 
focus of our efforts with the aircraft system to date, and thus the focus of this paper, has been on JDL fusion levels 0 
and 1. It is our intention, however, to provide a foundation for machine understanding and automation support for 
fusion levels 2+ in the future. For example, we are developing a prototype ontology model to begin experimentation 
on supporting tactical situation awareness. 
6 Conclusions 
The results have been very positive. Fusion software from actual legacy systems has been conformed to operate 
under a publish / subscribe triggering mechanism embedded in an ontology derived from a highly interoperable 
object-oriented model implemented in an embedded DBMS. At the same time we have been able to push the 
envelope on formalizing a way to use the ontology for more advanced fusion inference foreseeable in the future. 
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