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Abstract -- Generalized inference 
provides an elegant formulation for fusing 
sources that have many diverse states that 
are nonetheless inter-related, be it in often 
in weak and complex ways.  Indeed, levels 1 
through 3 fusion can be characterized as 
inferring states from evidence; estimation 
can be viewed as a specific inference 
discipline.  Unfortunately, the elegant 
inference formulation rapidly becomes 
intractably complex for any real-world 
problems due to the permutations of inter-
relationships between the interacting state 
variables.  Bayesian networks provide a way 
of coping with the complexity.  Bayesian 
networks are techniques for making 
probabilistic inference tractable and have 
been in broad literature and research for 
quite some time.  This paper describes the 
application of the Bayes network technique 
to a real-world large-scale fusion problem.  
It provides experience with the many 
adaptations and extensions that are required 
and illustrates some issues that need further 
research. 
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1 Fusion and Inference 

To effectively utilize ELINT/ESM 
parametric data reports the incoming data 

must be correlated with reports from other 
SIGINT sensors and must be processed to 
estimate the platform type identification, 
kinematics, and other behaviors associated with 
the emissions.  ELINT/ESM parametric reports 
typically contain emitter frequency, pulse 
repetition frequency (or interval), pulse width, 
scan period, scan rate, modulation type, scan 
characteristics, and so forth.  The kinematic 
components of the reports are typically area-of-
probability (AOP) ellipses representing a some 
agreed-upon confidence area (e.g., 90%) or 
bearing-only reports, perhaps with some 
indication of bearing accuracy.  These reports 
present two major challenges.  With respect to 
the parametric data, depending on the 
completion and accuracy of the parametric 
information, the parametric density of possible 
emitters, and the completeness and ambiguity 
inherent in the EW reference database (e.g., 
EWIR), a wide variety of ambiguity in the 
emitter and platform type identifications may 
be possible because many emitters operate in 
the same parametric space.  With respect to the 
kinematic data, ambiguity occurs due to the 
inaccuracy or incompleteness of kinematic 
data.  For example, ELINT reports typically 
contain only 2-D positional data with no 
altitude or velocity estimate.  In target dense 
environments, there may be many actual targets 
within the 95% confidence region about the 
area of probability ellipse or line of bearing. 



Silver Bullet Solutions, Inc. ID, Fusion, and Inference Nets  
Data Fusion 3 March, 2003 

__________________________________________________________________________________________________________________ 
2 

Copyright 2007-1017 Silver Bullet Solutions, Inc. 

Human analysts resolve the 
ambiguities using a wide assortment of clues 
and knowledge bases in an inferential 
reasoning (e.g., deductive, abductive, 
probabilistic, ...) process that is akin to 
detective-type reasoning.  Many aspects of 
this process cannot be mimicked by artificial 
systems at this point in technologic 
evolution.  The human knowledge base is 
vast, drawing upon years of accumulated 
information and associations.  Also, 
reasoning methods and their combinations 
and pattern processes are not fully 
understood.  However, artificial 
computation can provide enormous aids to, 
and for some processes, substitution for 
human SIGINT correlation and fusion.  This 
arises from the ability to consider available 
knowledge bases thoroughly and perform 
massive amounts of precise mathematical 
computations.  The proposed research topic 
herein focuses on this major payoff area 
with specific focus on Bayesian network 
techniques for inferential reasoning.  
QuesTech has built a limited Bayesian 
Network workstation for ELINT and ESM 
sources with a knowledge base developed 
from EWIR, EPL, Kilting, MIIDS IDB, and 
the ONI characteristics and performance 
database.  The proposed research is to 
perform minor tailoring of  the algorithms, 
databases, and sensor types to Rome 
Laboratories requirements, to develop 
measures of performance and test scenarios, 
to conduct performance testing, fine-tuning 
the algorithms, and to analyze the 
performance results in order to determine 
the potential benefits of this paradigm for 
SIGINT correlation and fusion.   The 
following subparagraphs provide a brief 
overview of Bayesian networks, their 
potential application to SIGINT fusion and 
correlation, a brief description of the 
QuesTech EW Identification workstation, 
and the proposed MOE analysis. 

1.1 Bayesian Networks 

Bayesian networks are techniques for 
making probabilistic inference tractable.  
Traditional expert systems are extensional, with 
all the information for propagation locally 
available from local immediate antecedents.  
This makes them quite tractable from a 
knowledge base and computational aspects.  
However, this tractability comes at a significant 
cost in intelligent reasoning power.  Consider 
the case of a signal “S1” emanating from a 
target for which the parametrics match 
reference database min/max intervals for 
emitter type A and emitter type B on platform 
types X and Y, respectively.  In a traditional 
expert system, emitter types A and B and 
platform types X and Y would be activated 
according to the strength of the sensor 
information and pre-determined propagation 
formulas, regardless of information from other 
sensors.  For instance, IFF, SAR/ISAR, or 
other signal information (“S2”) may be 
associated with the target that could render 
platform type Y impossible (or unlikely).  The 
rules  S1 > B > Y, which on the surface are 
analogous to P(Y| B) and P(B| S1), cannot 
convey  P(Y | B) and P(B | S1, S2).   The 
probabilistic, or intensional scheme, however, 
becomes intractable if one has many dependent 
clue types since n! joint probabilities need to be 
specified.   Bayesian networks make the 
probabilistic method tractable through 
intermediary nodes that convey all the 
dependent joint probability information while 
localizing the considered clues as is done in the 
extensional systems.  An example of a possible 
Bayesian network for a multi-sensor data 
fusion application is presented in the next 
paragraph. 

1.2 Application of Bayesian Networks to 
SIGINT Fusion and Correlation 

Bayesian networks are applicable to 
SIGINT fusion and correlation in two primary 
ways:  for signal emitter type and platform type 
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identification and for multi-source 
correlation.  Identification is applicable 
because it is an inferential process for clues 
(signals) to conclusions using knowledge 
about what signals can be caused by 
platforms and their emitters.  Multi-source 
correlation is applicable because of its high 
degree of intensionality.  That is, more than 
just spatial information needs to be 
considered.  For example, detection of a 
signal that is likely to be emitter type A 
known to be installed on platform type X 
that also carries emitter type B increases the 
probability of an correlation when a signal is 
detected that is likely to be emitter type B.  
Conversely, the likelihood of the correlation 
reinforces that probability of the second 
signal being from emitter type B.  Or 
consider the case when the SIGINT reports 
are instantaneous or contact reports, not 
track reports, that must be tracked (e.g., with 
some Kalman variant) to smooth out noise, 
estimate other state variables not directly 
measured (e.g., velocity), and allow time 
extrapolation (backward or forward) for 
time-synchronous correlation comparisons.  
If the measurements are bearing-only, 
typical for ESM and many SIGINT systems, 
the platform range can be estimated based 
on likely emitter and platform types using 
known emitter power ranges, seeker turn-on 
ranges, known platform altitude envelopes, 
horizon limitations, etc.  However, the 
tracker outputs will influence the 
identification results.  This type of circular 
dependency is difficult, if not impossible, to 
handle in standard extensional systems.  A 
depiction of a possible application of 
Bayesian networks to multi-source fusion is 
shown in Figure 1. 

Because identification is a 
component of an overall fusion process, 
EWID design and the research innovations 
must be viewed in the context of fusion.  
Therefore, as a preface to the EWID design 

and innovations, the following subparagraphs 
provide a brief overview of fusion and the role 
of identification within the overall process. 

2 Fusion Techniques and Tools 

Developing improved methods for 
identification estimation is intricately and 
synergistically related to the employment of 
data fusion concepts[hal1].  More accurate and 
complete knowledge of what something is 
contributes to making decisions about what 
things go together and how, in fact, how things 
may behave and, possibly, where they might be 
expected to go.  The converse is also true:  
knowledge of what things go together, how 
they are behaving, and where they are often 
aids identification estimates performed by 
humans (i.e., exploitation of kinematics and 
behavior for identification).  Despite the 
mission importance and the integral potential 
for fusion, currently fielded data fusion systems 
oriented to identification have not employed 
formal estimation techniques nor explored the 
combined use of estimation and AI.  IFF 
systems are typical of fielded identification 
systems.  There are a number of data fusion 
prototype systems that attempt to perform 
identification estimation beyond IFF.  About 30 
systems involve semi-automated situation 
assessment.  However, the systems which 
address the EW identification problems are 
typically merely pattern recognition systems 
which utilize neural networks or other pattern 
classifiers [hal2].   

One may speculate one reason for the is 
the shortfall in fielded identification systems is 
the large amount of sometimes subconscious 
data and complex inference used by humans in 
making identification decisions relative to 
current limitations in machine capabilities for 
this type of reasoning.  Identification 
estimation done by humans is not strictly 
formulatic but, instead, resembles investigative 
"detective" work.  Humans perform 
"approximate reasoning".  That is, they have 
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the ability to reason with uncertain data, 
vague concepts, and to determine patterns in 
noisy/incomplete environments.  There are 
various approaches used to emulate such 
reasoning including probabilistic reasoning 
(e.g., Bayes, Dempster-Shafer, Generalized 
Evidential Processing Theory), fuzzy logic, 
automated pattern recognition via neural 
networks, etc.  No single techniques "solves 
the problem," but several may be used in 
combination to address a specific problem.   
Therefore, in our EWID research, we have 
not felt compelled to adhere to specific 
techniques, but to use whatever technique 
might improve the identification estimate.  
This "data fusion toolbox" approach, 
depicted in Figure 11, is necessary to mimic 
the patterns of human identification 
reasoning, in some sense, then, a 
phenomenological approach. 

 

                                                 
1  Variation on taxonomy of algorithms developed in [kess]. 
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Figure 1.  Data Fusion Toolbox 

2.1 Fusion Architectures Overview 

As with most new disciplines, lack 
of standardized terminologies and 
paradigms hampers communication and 
community teamwork.  Initiating efforts to 
resolve this problem, the Joint Directors of 
Laboratories (JDL) Data Fusion Group 
(DFG) have defined four levels of data 
fusion, very briefly described herein.  The 

reader is referred to [walt] for more involved 
discussion. 

Level 1 fusion - This process 
combines location, parametrics, and identity 
information from multiple sensors and 
sources to achieve refined estimates of the 
identity and location of individual objects 
(e.g., emitters, platforms, weapons, or 
geographically constrained military units). 
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Level 2 fusion - Dynamic 
development of a description of current 
relations (i.e., situation refinement) among 
objects and events in the context of their 
environment.  This process assesses 
functional, causal, temporal and 
environmental relationships to determine the 
"meaning" of the battlefield situation. 

Level 3 fusion - Threatre refinement 
projects the current situation into the future 
to draw inferences about enemy threats, 
intent, lethality, friendly and enemy 
vulnerabilities, and opportunities for 
operations. 

Level 4 fusion - This metaprocess 
monitors the overall data fusion processing 
to provide information about real-time 
control and long-term performance 
improvement.  Level 4 processing 
determines the source-specific data 
requirements needed to improve the multi-
level fusion process.  In addition this 
process allocates and directs resources to 
achieve mission goals. 

Systems of today are primarily at 
level 1 where the problem is relatively 
"closed form" and rigorous mathematical 
derivations have been effective.  The higher 
levels, however, are more subjective and 
require the combined application of numeric 
and symbolic methods to effect automated 
method for approximate reasoning. 

At Level 1, two prevalent opposing 
characteristics of fusion architectures are 
sensor vs. data fusion and centralized vs. 
distributed [bar1, blac].  Universally 
accepted distinctions between sensor and 
data fusion do not exist.  However, general 
opinion is that sensor fusion: 1) is close to 
the raw sensor data processing, 2) is real-
time, 3) is short range, 4) is cross- 
disciplinary, and 5) involves sensor cueing.  
Data fusion, on the other hand, is: 1) 
multiple similar and dissimilar sensor, 2) 

theater-wide, and 3) database and INTEL 
aided.  Coherent architectures integrating 
both sensor and data fusion features are not 
prevalent, due somewhat to the existence of 
two technical communities. 

In distributed (or federated) 
architectures, each sensor processes its 
inputs to form target state estimates which 
are then processed by a multi- sensor fusion 
processor.   In a centralized architecture, the 
raw sensor data from each sensor is 
processed by a central processor.  
Centralized data fusion has theoretically 
better performance than distributed fusion 
because there is not information loss from 
the sensor to the fused product.  There are 
rather limited numbers of comparative 
studies.  Nevertheless, there are empirical 
results which confirm the improved 
performance of centralized processes and 
the notion of improved performance as 
fusion occurs ever close to the sensors.  In 
distributed fusion, data are compressed (i.e., 
sensor data are represented by a state or 
identification vector) resulting in less 
information (viz, the statistics of the raw 
data are either unavailable or only 
approximated via a covariance matrix) at the 
fusion process.  However, it may not be 
possible to perform centralized fusion due to 
communications bandwidth limitations 
(between the sensor sand central processor) 
or noncommensurate sensors (i.e., sensor 
data may be required to be transformed into 
state parameters to admit fusion).  Also, 
centralized architectures have not been 
prevalent because implementation often 
requires getting access to near-sensor signal 
processing operations, a step that is often 
infeasible due to either political or technical 
constraints. 

There may also be hybrid strategies 
for fusion architecture that take appropriate 
elements from the various architectures.  For 
instance, an architecture could be two-layer 
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with the sensor layer providing discipline 
expertise in the processing of the raw sensor 
data to a partial target state followed by a 
sequential observation multi-sensor multi-
disciplinary fusion process that would 
utilize databases and INTEL.   Rationale for 
such an architecture is that processing of, for 
example, raw image data is fundamentally 
different from processing of raw 
ELINT/ESM data.  Also, correlation of 
multi-sensor ELINT/ESM is best 
accomplished using discipline-specific 
observation features (e.g., frequency, pulse 
repetition interval, pulse width) as well as 
knowledge of the final target fusion 
estimate.  An important element of such an 
architecture that overcomes some of the 
disadvantages of current non-centralized 
architectures would be feedback from the 

final layer to the sensor layers to cue 
detections and to provide final target states 
to all processes so that all processes know 
the system's best estimate.  Also the 
communication paths might allow 
discipline-specific processes to 
communicate their unfinished or partial data 
with each other, thus allowing quick 
responses and occasional bypassing of 
assumptions such as the assumption of 
constant velocity, common in many 
statistical trackers.  This concept is 
illustrated in Figure 2.  In some sense, the 
concept depicted in this figure is analogous 
to a blackboard architecture in AI, since 
individual sensor-specific domain 
knowledge is applied, followed by global 
knowledge. 

 
Figure 2.  Layered Sensor/Data Fusion Architecture for Level 1 FusionRole of Identification in the 

Overall Fusion System 

An improved EW identification 
function is a component of an overall fusion 
system.  Identification estimation, the 
subject of this SBIR effort, can greatly aid 
the overall fusion process.  Each discipline 
(e.g., COMINT, IMINT) applies its domain-
specific expertise (e.g., demodulation and 

nodal analysis, pattern recognition and 
model construction).  They then fully 
communicate their conclusions, not as a 
single answer, but with the certainty 
estimated for each identification element.  
These identification estimates can then be 
used with the kinematic estimates and other 
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inferential knowledge, rules, etc. to make 
final multi-discipline identification and 
fusion decisions. 

3 Design of an ESM/ELINT 
Inference System 

3.1 Overview 

First, input EW classical parameters 
(RF, PRI, etc.) reports are normalized to a 
common "superset" format, the Sensor 
Track (ST) format.  In this process, a model 
of the sensor characteristics is used to 
estimate variance parameters not provided 
by interfacing systems.  Next the EW 
parameters are used with an innovative 
candidates determination technique that 
determines candidates without searching the 
database.  This scheme allows near 
instantaneous mode candidate 
determination.  The candidates are further 
pruned according to compatibilitly of 
discrete parameters. 

The next 6 steps accomplishe the 
recursive Bayesian net, a powerful 
probabilistic reasoning method we 
researched for accomplishing machine 
intelligence.  If the report is not indicated by 
the sensor system or an association process 
as corresponding to a previously reported 
track, a-priori values must be computed.  In 
experiments prior to this SBIR, we had 
computed a-priori's in a pre-run process.  
We chose to compute them dynamically in 
the SBIR to research the added benefit of 
using more localized probability universes.  
This is partly necessary due to the large 
surveillance ranges that might be required, 
having perhaps vastly different region-by-
region a-priori's.  This approach is also 
required because the OB is dynamic, not 
static, this is it evolves or is "learned" as the 
prototype runs.  This is in contrast to 
currently deployed systems where OB is a 
static file, updated from an ashore INTEL 

center (e.g., AIC) periodically (e.g., 
quarterly).   Dynamic a-priori's are 
computed for platform and emitter 
candidates using OB, Characteristics and 
Performance data, and other parameters. 

The next steps are recursive 
probability calculations using the just-
computed a-priori's and the values in the 
track file that were computed on a previous 
update cycle.  In addition to OB,  C&P, and 
the other parameters, this process uses the 
EW library and interpretive models of the 
meaning of the library parameters. 

The output is an identification vector 
for each target, conveying probability 
estimates for the target of the emitter and 

 
Figure 3.  Design Overview 
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platform.  The knowledge base is derived 
from various Navy Warfare Tactical Data 
Base (NWTDB) standardized sources2.  The 
databases are structured and utilized as a-
priori knowledge bases of emitter parametric 
ranges, emitter-platform fit, Order-of-Battle 
(OB),  Characteristics and Performance 
(C&P), and terrain3.   Other sources such as 
Military Integrated Intelligence Data System 
(MIIDS) Integrated Data Base (IDB)4, DMA 
Air Routes, and flight schedule databases 
are planned to be used to provide additional 
or more complete knowledge. 

In this section, we present a more 
detailed level of description.  The design for 
the EWID prototype is a shown in Figure 3.  
This figure shows only the core process for 
identification.  Not shown are processes for 
NERF preprocessing, geotailoring, and 
loading, TADIL-J taxonomy linkage to DIA, 
simulators, and tactical display.  The major 
functions shown in Figure 3 are described in 
the following subparagraphs. 

3.2 Parametric Candidate Selection and 
Gating 

As can be seen, the primary gating 
criteria for all  ESM and ELINT reports is 
waveform parameters.  This "gating" is by 
virtue of the bitmap retrieval scheme which 
instantaneously retrieves RF, PRI, 
SCAN_CHR and MOD_TYPE candidates 
which are then logically "ANDED" to create 
the final candidates list.  We chose this as 
the first discriminant over kinematics 
because, for ESM and ELINT, waveform 

                                                 
2  NWTDB is the Navy data and message standardization process 
for warfare systems, tactical, INTEL, etc.  Its components include:  
Characteristics and Performance (C&P), Electronic Warfare, Order 
of Battle including facilities and sites, Cryptologic, 
Meteorological, Mapping.  It is directed by [cno3]. 
3  DMA World Vector Shoreline (WVS) being used in Phase I for 
display only.  Terrain tailoring of probability density functions 
(described later) would ultimately benefit from Digital Terrain 
Elevation Data (DTED) or equivalent considerations. 
4  MIIDS IDB is the authoritative OB and facilities and sites 
database from DIA.  Its size is roughly 3.5 Gbytes. 

parametrics will normally be more 
discriminating5.  However,  a kinematic 
hash subsequent to the parametric hash may 
be added later in EWID development if 
necessary for real-time requirements. 

The mode/ST candidate bitmap is 
then decoded into a scratchpad ST and ST-
ST candidacy links.  This function uses the 
same utilities for ST-ST link maintenance as 
are used in other parts of the programs.  
Scoring begins by chaining up the ET-ST 
and IT-ET physical links to identify IT 
candidates linked to the ST candidates.  Of 
course, multiple IT's per ST candidate are 
typical; even multiple ET's per ST are 
typical. 

3.3 Kinematic Probability Scoring 

For IT-ST kinematic scoring, the 
input ST kinematic data (LOB or AOP) is 
converted to a discrete PDF.    LOB 
conversion considers the sensing origin, 
max detection range of that sensor against 
the ST candidate's Maximum Effective 
Radiated Power (from NERF), horizon 
versus altitude of the linked IT candidate, 
and seeker-turn-on-range for active weapons 
IT candidates.  Time since initial detection 
by that sensor (if the ST report is a coherent 
track report) is also used to "count down" 
the approximated initial ranges. 

IT-ST scoring recurses if the IT is an 
archetype, thereby necessitating estimating 
its probability density about its host ship, 
aircraft, or airbase.  For ships that have not 
been detected by a sensor but could be 
within surveillance range according to NOB, 
an expected max range from homeport is 
looked-up based on IT TADIL-J Specific 
Type, or if the Specific Type value is NS, 
the next level up, Platform6.  For weapons, 

                                                 
5 Particularly true for ESM bearing-on (LOB) reports 
6  Hierarchical defaults are used throughout to accommodate 
incomplete INTEL data, an almost fundamental characteristic of 
INTEL databases. 
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NID max-salvo-rate and max-range values 
are used along with other detected launches 
from the firing platform and the firing 
platforms weapons loadout (in NID and 
NERF).  If the weapon candidate is 
launched from an aircraft, the PDF must also 
be iterated against the aircraft's max-
combat-radius (from NID) from any airbase 
linked to the aircraft (via IT-IT links) that 
are within the kinematic gate of the reported 
ST, extended to account for aircraft and 
weapons radii.  If the IT candidate is a track, 
then its PDF must be propagated (forward or 
backward).  A real-time algorithm for this 
propagation is an area of continuing 
research.  If history exists, backward would 
be the choice.  Exceptions and large 
uncertainties in many of the input values are 
tolerable to the algorithms because they do 
not have a sensitive response to small 
variations.  Despite uncertain or incomplete 
data, inclusion of these factors provides an 
advantage over current approaches which, in 
effect, assume uniform distributions and 
total pre-engagement ignorance. 

Once the PDF's are generated and 
aligned, they are scored by taking the 
multiple sums of the products of the overlap 
discrete PDF elements: 

 
PDF x y PDF x y x yi j

ji
i j i j1 2

2( , ) ( , )( )∑∑ ∆ ∆  

 This involves determining a set of 
summing intervals for each degree of 
freedom that is the superset of the ST report 
and IT candidate discrete PDF intervals.  
(We did this already for parametric scoring 
in the demonstrator EWID.)  The result 
requires no normalization -- it is the 
probability that two such PDF's could be 
manifested from the same target. 

As the ET-ST, IT-ET, and IT-IT 
recursions pass back values, they are 
combined according to conditionalization 
(total probability) and Bayesian inversion 
rules.  In the process, previous pass values 
will be invoked.  For the first score of an ST 
against an ST, ET, IT-ET, or IT, a-priori 
values must be used.  Since a-priori values 
have meaning only within a specified 
universe, we take the universe as small as 
possible (3σ), resulting in  dynamic "on-the-
fly" a-priori's.  This is in contrast to current 
identification and fusion systems that 
compute a-priori's pre-runtime.  Our 
research led us to this approach when we 
looked into the universe size to be used for 
a-priori's.  Since we anticipate a 2000 nm 
radius surveillance volume, we expect the a-
priori's to vary significantly over the 
surveillance volume.  It seemed best to 
choose as the universe for a report the 
smallest universe that we can be reasonably 
confident will always contain the track. 

3.4 Parameter Probability Scoring 

The parameter score is relatively 
easy since recursion through the ET's and 
IT's is not required, just scoring to the 
candidates the scratchpad ST holds.  If the 
candidate ST is a mode, the min/max 
intervals are converted to 2σ discrete 
Gaussians (7 intervals currently).  For ST 
tracks, it is planned for the history of hits 
will be maintained using some form of 
fading memory, state-transition detection, 
etc.  The two sets of discrete PDF's are 

 
Figure 4.  Knowledge Base Weapon Uncertainty 

Region 
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integrated in a similar manner to the 
kinematic integration.  Missing parameters 
are handled using the geometric mean of the 
available parameter scores, the equivalent of 
χ2 additive doping factors or multiple 
thresholds.  Discretes are checked for 
compatibility using compatibility tables.  Of 
course, presence of a parameter in one 
track/mode while it is Not Applicable in the 
other is cause for disqualification.  Like the 
kinematic scores, the ST-ST scores are 
combined with a-priori's and, using 
conditionalization and inversion rules, the 
final set of ST-ST, ST-ET, ST-IT, and ST-
ITET probabilities is formed.  These are 
maintained for display, decision logic, and 
next pass recursion. 

3.5 Decision Logic 

Decision-making logic planned for 
Phase II is by multiple uni- and bi-modal 
thresholds for Semi-auto and Full-auto 
modes.  However, since multiple ST's can be 
linked to an ET and multiple ET's can be 
linked to an IT, it is necessary to form a 
composite of the multi-source tracks to get a 
decipherable set of candidates for each IT 
and ET track.  (Even if the ST had no 
identification candidates, it would result in a 
new ET and new IT linked to it.)  This is 
done using ST composite scratchpad ST's in 
which to generate the composites for each 
ET that may be linked to an IT (currently 
parameter-wise max'd at 10).  Composites 
are not maintained, they are generated only 
for decision making, either automatic or 
semi-auto.  More sophisticated ambiguity 
resolution and decision logic schemes, along 
the lines of the "happy marriages" scheme 
we use for MTRACS, will be researched in 
Phase II. 

If the mode is semi-auto or either of 
the auto-thresholds fail,  the operator is 
notified of an identification ambiguity 
requiring more intuitive or subjective 

judgment.  Our intention is to give the 
operator some level of control over the 
thresholds resulting in notification so he can 
level his workload or, alternatively, his 
confidence in the automatic algorithm.  Of 
course, we could also monitor for overload 
indications such as alert queue backup. 

Upon selection of an alert, the 
operator is presented with summary data on 
the IT with buttons for exploring its linked 
IT's and ET's, each resulting in popups.  
From the ET popups, ST's can be called up.  
Candidates are shown in scrolling lists in 
order of probability.  A photograph of some 
of the popups for the pre-SBIR demonstrator 
is shown in Figure 8 and Figure 9.  EWID 
displays the most probable Category, 
Platform, Specific Type, DIA platform, and 
Emitter types initially.  As the operator 
scrolls the lists of candidates he wishes to 
explore and takes the select action, the 
hypothesis hierarchy tree switches to the 
selected branch.  This is done using a variant 
of the composite scratchpad ST's called 
constraint scratchpads7.  However, if the 
operator should need to see all the 
candidates, rather than just a branch, EWID 
provides an "ALL" button that displays all 
Platforms, Specific Types, DIA platforms, 
and Emitter types in probability order.  The 
"ALL" display is just a text widget, not a 
scrolling list except for Emitter type.  The 
reasoning for treating the emitter type 
differently was that for the highest ranking 
DIA platform, there would be few Emitter 
type candidates in the branch display.  The 
operator, when analyzing a track from the 
emitter point of view, probably wants to 
know all the Emitter type candidates, not 
just the ones for the best platform.  When 
the operator selects an Emitter type from the 
"ALL" popup scrolling list, the branch 
display then shows the highest branch given 

                                                 
7  Meaning the operator selection imposes a constraint on the 
normal ranking logic.)  
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the selected Emitter type.  Each popup has 
confirm buttons for confirmation of the 
identity candidate.  When a low-hierarchy 
element is confirmed (e.g., specific type), 
the implied upper taxonomy levels are 
automatically confirmed. 

3.6 Fusion 

Upon an identification decision, 
whether automatic or semi-automatic, a 
number of adjustments take place.  The 
hooked IT is merged into the selected 
candidate along with its linked ET's and 
their linked ST's.  Kinematics are fused at 
the IT level.  Parameter min/max's are 
updated in the ET for display purposes only 
-- the linked ST's fully convey the parameter 
data for identification and fusion purposes.  
If the candidate ET or IT is an archetype, its 
OB count is decremented.  The most likely 
airbase or weapon launcher is used for 
aircraft and weapons.  The archetype 
characteristics are then inherited by the 
track.  For ET's, all the concurrent or 
transitional modes are inherited according 
concurrent and transitional groups of modes 
as indicated in the ET-ST links.  The 
inherited modes will be indicated as 
dormant or undetected but will be available 
to match future incoming reports.  The 
mechanism for the inheritance is to add links 
to the single mode records.  Similarly, for 
IT's, IT-ET links are added for the 
undetected emitters so that if they should be 
detected, the IT track will become an 
identification/correlation candidate. 

As this brief description should 
show, the candidacy and physical link 
structures and utilities play a continuous role 
in EWID.  With this foundational effort 
completed in Phase I, many experiments can 
be run in Phase II. 

4 Innovations 

In the preceding section, the EWID 
design was described.  In this section, we 
describe the innovative aspects of the EWID 
research.  EWID research has and continues 
to encompass a judicious blend of 
experimental innovations with standard 
modern fusion concepts.  The major 
innovations are: 

• Identification as an 
Estimation Problem 

• Order-of-Battle and 
Surveillance Fusion 

• Real-Time Recursive 
Bayesian Net Inference 
Algorithm 

• ESM/ELINT/OB Fusion 
Knowledge Engineering 

• Non-Gaussian Statistical 
Scoring 

• Combined Identification and 
Kinematic Estimation 

• Multi-Source Fusion 

• Ambiguity Resolution 

• Special Clues 

• Real-Time Considerations 

Each of these innovations are 
described in the following subparagraphs. 

4.1 Identification as an Estimation 
Problem 

Owing to the success of state 
estimation theory in target tracking and 
other applications, we researched analogous 
formulations for the identification problem.  
State estimation typically addresses 
continuous state variables.  The variables 
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are always defined in metric space8 [epst].  
We introduced the notion of defining a 
metric on the discrete identification space in 
[nos1] and will research this fully in Phase 
II.  In this view, identification vectors are 
analogous to continuous variable state 
estimates and covariances.  To see this, 
consider a single dimension continuous 
variable.  Its state estimate and 1-element 
covariance matrix convey the same type of 
probabilistic information as an identification 
vector.  In fact, the continuous variable state 
estimate and covariance could be 
approximated as a probability vector by 
defining each vector element to correspond 
to an interval in the variable space and with 
probability values in the vector 
corresponding to the probability mass in that 
interval.  In the EWID research, we attempt 
to draw parallels between the mathematics 
of these identification vectors and the 
standard mathematics of state estimation 

                                                 
8  A metric space, A,  is one in which is defined a function ρ ∋ ∀ x, 
y ∈ A:  (1) ρ(x, y) > 0, (2) ρ(x, y) = 0 iff x and y are identical, (3) ρ
(x, z) < ρ(x, y) + ρ(y, z).  [epst]  

theory. 

EWID Phase I produces an 
identification vector with ranked 
probabilities for emitter and platform type as 
shown in Figure 5.  The emitter type is 
categorized per ELNOT.  The platform type 
is categorized as per DIA OB: 

• EOB/GOB/MOB:  specific 
lat/long site 

• NOB:  specific hull 

• AOB:  specific airbase 

• A/C:  aircraft model to alpha 
modifier 

• Weapons:  model to alpha 
modifier 
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Figure 5.  Identification Vectors and Kinematic State Estimate Covariance Matrix 
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4.2 Order-of-Battle and Surveillance 
Fusion 

Current ESM and C3I systems 
maintain Order-of-Battle (OB) as a semi-
static file, independent of the track file (e.g., 
JMCIS, SLQ-32).  This causes a schism in 
the systems knowledge bases as the 
encyclopedic pre-deployment OB becomes 
asynchronous with the surveillance track 
file.  In the Phase I research we took the 
revolutionary approach of combining the 
OB file and track file into one coherent file.  
This involved initializing the track file with 
OB data.  Part of the challenge was to find a 
common conceptual data model for OB, 
composed of NOB, AOB, EOB, aircraft, 
weapons, and their relationships, and 
surveillance tracks.  Some OB elements, 
aircraft and weapons, are archetypal, not 
actual instances of aircraft or weapons.  
Aircraft archetypes are related to the actual 
individual aircraft via linkages to airbases, 
with the linkage indicating how many of that 
type of aircraft are typically located at that 
airbase.  Then correlated surveillance 
reports are used to update OB data or 
instantiate OB archetypes.  This has had 
enormous implications from knowledge 
engineering, inferential reasoning, and 
software engineering vantages.    

This approach furthers the blurring 
of the distinction between INTEL and 
surveillance, a trend that increasingly 
benefits warfighters.  In this case, the 
blurring is due to the fact that OB is based 
on some form of reconnaissance, analysis, or 
other intelligence surveillance at some point 
in time.  INTEL is treated as merely 
previous surveillance.  By capitalizing on 
the vast investment in everyday INTEL 
RECON, S&T analyses, etc., EWID's track 
picture is initialized with a comprehensive 
knowledge of the theatre of operation.  

Correlating surveillance against this a-priori 
track file is equivalent to identifying targets 
to a defined taxonomy since the OB defines 
the identification universe.   Identification 
and correlation are accomplished by the 
same process.  Additionally, this approach 
enables: 

• Tactical EOB.  A dynamically adaptive 
EW "library" and EOB.  Conventional 
ESM systems use pre-engagement EW 
libraries to identify contacts.  EWID 
uses received ELINT as well as pre-
engagement INTEL.  The use of ELINT 
provides the parameter ranges actually 
being used by a platforms emitter 
instead of the generic ranges found in 
libraries.  Also, use of ELINT provides 
better locational information over the 
general locations available via OB so 
that the more informational maximum 
a-posteriori likelihoods can be used 
instead of the conventional maximum 
likelihoods. 

• Order-of-Battle Accounting.  The 
INTEL database is the initial track 
database, with sensor reports used to 
discover or account-for the pre-engage 
INTEL. 

• Inheritance of archetype properties on 
instantiation even if there is no current 
sensor data detecting those properties.  
This allows for recognition of those 
properties as potentially belonging to 
the instantiated track if they do manifest 
themselves.  

• Kinematic scoring between surveillance 
and OB kinematic information.  This is 
made possible a knowledge structure 
using C&P and other parameters to 
transform OB data to surveillance 
expectations.  
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• New track hypotheses can be based on 
local region populations suggested by 
OB that have not yet been accounted for 
by previous surveillance reports.  This 
consideration allows the a-priori 
probability of target types (e.g., Mig-29, 
Mirage F-5) to vary geographically 
according to OB and other parameters.  
In currently deployed systems, the 
expected target density is static and 
uniform over the entire surveillance 
volume.  EWID allows it to be more 
accurate:  vary in time and by location 
and by non-kinematic parameters.  This 
technique provides a way not only to 
update OB, but also to use OB as a 
universe for which surveillance reveals 
expected items.  This is much more 
knowledgeable than conventional 
likelihood methods which use default 
uniform target density values for the 
entire universe of operation. 

A key element of classification and 
identification processes, whether man or 
machine, is the use of a-priori knowledge 
databases.  Human tactical analysts do not 
make fusion decisions based merely upon 
the sensor inputs.  In subtle ways they 
consider INTEL, target characteristics, 
known adversary tactics, battle condition, 
etc.  Databases exist that convey aspects of 
this information, most of which are within 
the "umbrella" of the Navy Warfare Tactical 
Data Base (NWTDB) database 
standardization program.  These include the 
Naval Emitter Reference File (NERF), Navy 
Intelligence Dataset (NID), Military 
Integrated Intelligence Data System 
(MIIDS) Integrated Data Base (IDB), DMA 
DAFIS air routes, Joint Munitions 
Effectiveness Manual (JMEMs), and others 
such as JOPES, SORTS, and so forth.  In 
EWID Phase I, we use only NERF and NID.  
As new INTEL or surveillance manifests 
itself, we in-effect update these databases by 

virtue of their inclusion in the track file and 
the consequent updates there.  As more 
exotic knowledge is required for fusion, 
knowledge representation becomes a 
challenge.   Technologies such as fuzzy sets 
could provide expressive power to the 
existing database technologies for data 
dictionaries (e.g., fuzzy data element 
definitions for such status as unit morale). 

4.3 Recursive Bayesian Net Inference 
Algorithm 

The core of the EWID approach is 
the recursive Bayesian algorithm applied as 
a series of Bayesian Net links using the an 
actual EW parametric database and  the 
Order-of-Battle (OB) database.  Bayesian 
nets are the state-of-the-art in probabilistic 
inferential reasoning (i.e., machine 
thinking).  This provides a recursive 
maximum a-posteriori probability 
computation exploiting a-priori INTEL 
information such as OB and C&P and 
refining estimates over time and over multi-
sensor ESM/ELINT updates.  Bayesian 
techniques have been known as applicable 
to AI nearly since its inception.  However, 
they were considered intractable for 
complex applications, requiring knowledge 
of too many joint probability distributions 
[char, barr].  The Bayesian net provides a 
methodology for modelling the probabilistic 
dependencies in the real-world problem 
space, thereby often enormously alleviating 
the requirements for joint probability 
knowledge. 

We chose to research the Bayesian 
net because it allows us to build a model of 
the identification process that resembles 
human identification thinking.  Additionally, 
the recursive algorithm is the discrete non-
metric-space analog of a zero-process-noise 
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Kalman filter9, thus encouraging our interest 
in generalizing the estimation problem, as 
we discussed previously.  The recursive 
probability approach also has the desirable 
property that ambiguity decreases 
monotonically with updates.  Also, Bayesian 
nets provide a basis for the representation of 
explicit knowledge, unlike techniques such 
as neural networks which are used to 
represent knowledge which is not explicit 
(i.e., pattern recognition). 

We modelled the EW, OB, 
surveillance, and identification hypothesis 
domain using semantic net concepts.  This 
net becomes a Bayesian net by attributing 
probability formulas for traversals through 
the net.  The relationships encoded in the 
NERF (or other EW parametric and OB 
databases) are ideally represented as 
Bayesian nets because Bayesian nets 
faithfully represent the dependencies 
between variables. 

One of the challenges in EWID 
research is the programming of the 
algorithm as a real-time algorithm.  The 
mathematical formulation is recursive over 
all candidates.  This would not result in real-
time performance.  EWID retrieves the 
initial candidate set by parametrics 
(discussed in more detail later) using a non-
standard bitmap technique.  The 
mathematical formulation is IT's and ET's 
downward; the real-time implementation is 
ST's upward.  Hence, it has been necessary 
to implement the functional equivalent of 
the mathematical formulation in the reverse 
order of candidate selection.  Research on 
implementation of inferential, knowledge-
based, inferential, and fusion algorithms for 
real-time requirements is an import aspect of 
the EWID effort. 

                                                 
9  In the sense that the recursion is applied to the last cycle "state 
estimate".  There is no process noise because the process model for 
identification has no assumptions analogous to the assumption of 
constant velocity.  The model is static, not dynamic. 

4.4 ESM/ELINT/OB Fusion Knowledge 
Engineering 

The degree to which a computer can 
be used as a part of a system controlling 
some environment, in the cybernetic sense 
[scho], depends on how much of that 
understanding is embedded in the computer.  
A knowledge representation embeds that 
understanding through a "combination of 
data structures and interpretive procedures 
that, if used in the right way in a program, 
would lead to knowledgeable behavior" 
[barr]. Similarly, conceptual data models 
provide a means  for achieving 
knowledgeable behavior by defining "a 
number of symbol structures and symbol 
structure manipulators which...are supposed 
to correspond to conceptualizations of the 
world by human observers" [borg]. 

EWID research has involved 
knowledge engineering the Battle Force 
surveillance environment, the physical and 
fusion hypotheses universes, by encoding 
INTEL knowledge bases as semantic nets 
upon which Bayesian net mathematics are 
attributed.  EWID's reasoning capabilities 
and logic are built upon a powerful 
organization of the EW track files in three 
tiers as shown in Figure 6.  The 
intercept/sensor level, Sensor/Intercept 
Track File (STF), corresponds to a reported 
sensor track or a tracked set of contacts from 
a reporting source.  In EWID's unique 
approach, the STF also includes the EW 
"library" emitter modes.  Combining library 
and sensor data in a single file allows a 
single process to match new reports against 
previously received reports and pre-
engagement INTEL and for the EW 
"library" to dynamically adapt to the real-
time tactical electronic situation.  An 
underlying concept in this is the treatment of 
pre-engagement INTEL as previous 
surveillance, a concept that introduces 
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powerful new reasoning capabilities into the 
data fusion problem. 

Representation of the relationship 
between knowledge base elements is 
important and semantic nets provide a 
powerful tool for representation in a high 
fidelity manner.  Most conveniently, 
Bayesian net mathematics can be 
conveniently overlaid on the semantic net, 
thereby creating not only a knowledge 
representation, but also a reasoning method 
and a way to manage uncertainty. 

The Emitter Track File (ETF) is the 
consolidated representation of the fused 
STF's into emitters.  This is the first level 
operators would normally be interested in.  
The Intermediate Track File is the 
consolidated representation of the fused 
ETF's into platforms.  The term 
"intermediate" is used to convey that cross-
discipline fusion to other INT's (e.g., 
COMINT, IMINT, RADINT) is still to be 
performed to create the final all-source 
fused track. 

 
Figure 6.  EWID Track and Fusion Structure 

The levels are related in EWID via 
two-way ITF-ITF links, ITF-ETF links, and 
ETF-STF links.  The first two are many-to-
many; the last is one-to-many.  The levels 
and the links are related in EWID via 
candidacy links, indicating and storing 
possible identification and correlation 
candidacies.  Candidacy links are STF-STF, 
STF-ETF, STF-ITF, STF-ETF/ITF.  

Candidacy links store the probability values 
for recursion.  Candidacy links and their 
half-rules are shown in the following pages.  
As can be seen, the links explicate or reveal 
the nature of OB, ESM, and ELINT fusion 
over all categories of target via the logical 
constraints10 governing their formulation.  
For instance, the first diagram, showing ST-
ST links shows how input track reports 
(running down from ST1 to STm have 
candidacy links to other tracks and also to 
modes.  The filled nodes at the crossings 
exemplify a candidacy link.  In the next 
diagram, both candidacy links and physical 
links are shown, the former as filled nodes, 
the latter as small squares.  In the EWID 
software, a standard set of  link utilities 
provide a consistent means for adding, 
dropping, updating, and traversing physical 
and candidacy links. 

                                                 
10  The logical constraints play a role similar to "half-order theory" 
in mass spectroscopy [barr]. 
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• Usually, if B is a candidate of A 
(i.e., A "likes" B), B likes A but not 
always (STm likes ST1 but ST1 
doesn't like STm) 

• It is possible for a track to not like 
any other tracks implying new 
track (STm-1) 

• It is possible for a track to not like 
any modes implying a new mode 
(e.g., WRM) 

• Probabilities based on mode/track 
parameter probabilities and 
kinematic probabilities with linked 
ET, linked IT, and IT-IT basing and 
loadout links, and C&P, 
geopolitical, and other parameters. 

• Holds P(ST | STζ, past  )-1 
 

 
 

• An ST always has a least one ET 
link and vice-versa 

-  Each mode links to a single 
archetype and 0-to-many ET 
tracks 

-  Each ST track links to one and 
only one ET track 

• Only the concurrent and 
transitional modes are linked to ET 
tracks via inheritance 

-  Allows mode tracking 
• Multiple ST tracks linked to a 

single ET track are the result of a 
correlation decision 

• An ST track can have candidacies 
with 0-to-many ET tracks and/or 
archetypes 

• Candidacy scores are a function of 
ST track/mode score, IT 
track/instance score, ST-ET and 
ET-IT links containing mode-
emitter, basing/loadout defaults, 
and C&P, political and other 
parameters 

• Holds P(ST | ETk, past )-1 
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• An ST track can like 0-to-many IT 
tracks, instances, and/or 
archetypes 

• Holds P(ITj | past )-1 

 

 

 

 

 

 

 

 

 

 

 

• Holds P(ST | ETk, ITj,past)-1 
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• For example track IT2 is a ship of 
same class as instance ITj+1 with 
ETs-1 radar discovered as ETr 
and ETs dormantly linked via 
inheritance at confirmation (auto 
or manual) 

• In EWID all IT tracks have a linked 
ET since only sensors are 
ESM/ELINT 

• An IT track can have 1-to-many 
ET tracks and/or archetype links 

• An IT archetype can have 1-to-
many ET archetypes links 

 
 
 
 
 
 
 
 
• For example, Airbase ITj+1 hosts 

A/C type ITk+1 which hosts 
weapon type ITl-1 

• For example, Ship track IT3 hosts 
archetype A/C ITk+1, archetype 
weapon ITl, and track ITj-1 

• Tracks can host tracks, instances, 
and/or archetypes 

• Archetypes can only host 
archetypes 

• Upon confirmation (auto or 
manual), instances become tracks 
and tracks inherit instance data.  
Archetypes get OB count 
decremented. 
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4.5 Non-Gaussian Statistical Scoring 

Many ESM input reports are 
kinematically in the form of Line Of 
Bearing (LOB) or bearing-only reports.  
These are only awkwardly representable in 
Cartesian covariance matrices since there is 
no know range, necessary for the coordinate 
system conversion.  Cartesian trackers of 
bearing-only inputs have known behavioral 
anomalies.  We were involved with this 
problem in the Tomahawk weapon system 
which represented LOB's as high 
eccentricity ellipses.  Later, on ACDS Block 
1, we analyzed the performance of 
LOB/AOP trackers using models.  The 
major problem was dubbed "range runaway" 
in the ACDS project and it resulted in the 
range estimate for single source LOB 
tracking to converge to zero.  This was due 
to the difficulty in making a good initial 
range guess, the ambiguous interpretation of 
a bearing change in terms of the target 
motion model, and, in linear Kalmans, the 
linearization in the observation equation11 
[nos2, nos3].  Modern computing speeds and 
memory capabilities allow radical 
approaches to these problems.  In particular 
it may not be necessary to coerce bearing-
only measurements into Cartesian form, but 
to maintain the probability density values 
individually over a grid.  Consequently, 
EWID Phase I has researched, 

• Non-Gaussian Kinematic Scoring.  
Kinematic scores are calculated using 
non-parametric statistics, treating 
uncertainty regions as non-Gaussian 
Locational Probability Densities 
(LPD's).  Non-Gaussian LPD's will be 
valuable in the littoral area where 
coastlines, mountains, waterways, etc. 

                                                 
11  Ultimately, the project settled on a non-linear Kalman, called 
the Multi-State Space (MSS) tracker that, in effect, used a 
Cartesian motion model and a polar observation equation.  This 
was verified to perform roughly equivalently to the iterated 
extended Kalman described in [gelb]. 

can preclude the location of certain 
types of platforms [arp].  Such 
representation is advantageous for 
multiple-LOB and AOB data 
correlation scoring and fusion and also 
for terrain tailoring, a proposed Phase II 
feature.  In particular, uncertainty 
regions for confirmed ships should be 
zeroed over land and redistributed to the 
oversea elements as shown in Figure 7.  
Computational techniques for 
transforming to/from parametric 
representations and scoring over widely 
varying levels of granularity are being 
devised. 

• Non-Gaussian ESM Parameter 
Scoring.  This technique is also used 
one-dimensionally for scoring 
parameters, allowing for increased 
future abilities for parameter range non-
Gaussian shaping for, say, channelized 
transmitters or uniform distributions.  
Multiple frequency radars have been 
around for some time.  PRI often 
appears as stagger groups.  The non-
Gaussian parametric representation also 
provides a more accurate learning of or 
history keeping for observed emitters.  
ESM/ELINT/INTEL parameter scores 
use non-parametric statistics to allow 
high-fidelity representations of the 
parameters.  This is especially 
beneficial for HULLTECHable crystal 
oscillators.   

The probability mathematics of the 
discrete PDF's are conceptually 
straightforward. Correlation scores are 
computed as approximate integrals over the 
overlapping PDF's12.  Kinematics are fused 
as normalized element-by-element products 
of the PDF grids. 

                                                 
12  The number of discrete PDF elements maintained is a compile-
time parameter that could vary depending on the real-time 
requirements, data update rates, computational resources available, 
and mission accuracy requirements. 
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Figure 7.  Non-Gaussian Kinematic Uncertainty 

Representation & Terrain Masking 

4.5.1 Combined Identification and 
Kinematic Estimation 

Current estimation techniques are 
primarily for kinematics.  This design is 
innovative in combining both.   It is 
expected that this design's results will be 
more accurate and less ambiguous through 
the full use of all available clues.  

4.5.2 Multi-Source Inputs 

This design accepts inputs from 
sensors such as: 

 

• Ownship: SLQ-32, WLR-1H, 
ALQ-142 

• Link (11, TADIL-B, or JTIDS):  
ALR-73, ALR-66(V)3, SLQ-32, 
ALQ-142 (via SLQ-32), ... 

• National:  TRE/TRAP 

This design scores new reports 
against previously received reports/tracks 
from other sources using the same 
processing and algorithms as it uses to score 
against "library" emitter modes.  This is 
possible because modes and sensor tracks 
are uniformly maintained in the STF.  The 
advantage is that reports/tracks from one 
source that become identified aid the 
identification of subsequent reports, 
supporting, for example, HULLTECing.  
The integrity of the sensor report/track is 
maintained in the STF in a "normalized" 
format, with the fused emitter and platform 
estimation embodied in the ETF and ITF. 

Parameter types can be mismatched.  
For example, one report could contain RF, 
PRI, and Scan Rate while another contained 
RF, PRI, and PD.  For the Phase I research 
we used the geometric mean of matched 
types.  This is functionally equivalent to 
other schemes we have used:  multiple χ2 
thresholds or a  χ2 "doping" factor, an 
additive factor to neutralize the absence of a 
missing comparison degree of freedom.  
There are a number of other methods for 
treating mismatched parameter types via 
similarity measures that will be considered 
in the Phase II research. 

 

4.5.3 Ambiguity Resolution Aids 

EWID resolves ambiguity beyond 
the basic gating or lookup levels by 
mimicking human reasoning.  EWID cannot, 
of course, mimic advanced cognitive 
capabilities.  EWID can, however, consider 
and collate vast amounts of data in its 
reasoning that can aid an analyst/operator in 
resolving these high-ambiguity tracks.  One 
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aid for resolving ambiguity is ranking of  
ambiguous candidates.  EWID Phase I ranks 
candidate identifications based upon 
kinematics, OB, parametric fit, weapon and 
A/C ranges, and emitter effective radiated 
power.  Another method of handling 
ambiguity is hierarchical abstraction.  When, 
after ranking, ambiguity still remains, EWID 
can present and output tactically useful 
results by abstracting the platforms 
hierarchically.  The hierarchy EWID uses is 
the JTIDS joint taxonomy which provides 
three levels of hierarchical abstraction over 
the DIA OB platform taxonomy.  The DIA-
JTIDS taxonomy links are included in Phase 
I. 

GDSS evolution is as systems that 
are tools for analysis rather than "truth" 
machines [haf].  This is particularly true for 
identification, where own system 
limitations, natural factors, ambient 
environment, adversary techniques, and so 
forth can conspire to create problems 
requiring massive information processing 
and high-order human decision making.  
EW identification is an information intense 
activity.  EW operators evaluate 
measurement data on their CRT's, signal 
modulations on audio, other sensor data on 
their PPI's, and intelligence data via system 
lookups, briefings, messages, intelligence 
documents (e.g., EPL and EW OPTASK), 
and open source documents.  The research 
prototype provides alternatives for 
presenting data in an organized manner that 
supports cognitive recognition of the 
information.  The technique for 
accomplishing this is shown in Figure 8.  On 
initial presentation, the workstation shows 
the most probable "branch" of the JCS/DIA 
taxonomic hierarchy.  That is, the most 
probable Category's Platforms are presented 
followed by the most probable Platform's 
Specific Types, etc.  The operator can 
explore other branches of the hierarchy 

using the X-Windows scrolling lists by 
selecting a lesser probability item (e.g., a 
lesser probability Category).  Upon such an 
event, the entire hierarchy instantaneously 
switches to the operator-selected branch.   
While hierarchical organization supports 
cognition, it sometimes is insightful to view 
non-hierarchically.  Hence, the EW 
classification workstation provides X-
Windows buttons for selection of all 
Platforms, Specific Types, NERF Platforms, 
and Emitters resulting in pop-ups of the 
selected cross-section.   
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Figure 8.  Bayesian Net Hierarchical Alternatives Display.  This is a basic hierarchical Bayesian Net example.  
For the hooked track (9393), the ID Cands button was depressed resulting in the hierarchical ID alternatives 
popups in the lower part of the display.  The Bayesian Net estimates the Environment/Category as 66% Land, 33% 
Air and less than 1% Surface.  Given Land, the only alternative is Surveillance Site (100%).  Normally, the Specific 
Type scrolling list would show the alternatives given the selected or most likely Platform but in this example the 
operator had selected display of All Spec Types.  This is sometimes necessary to cut across the alternatives 
hierarchy horizontally because branch-by-branch analysis may be too tedious.  Whenever a platform or emitter 
candidate is selected, at any level in the hierarchy, the entire set of alternatives is redisplayed to be consistent with 
that selection.  The operator confirms the alternatives at any level.  This set of displays would be used in manual 
mode, high ambiguity semi-auto mode, or to review a target’s fusion decision and current alternatives.  Of interest 
to note is the EA-6B candidate which makes the list because of its jamming pod.  Its probability is low however, less 
than a percent. 
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4.5.4 Dynamic A-Priori's 

Bayesian a-priori's are computed 
dynamically (on-the-fly).  We researched 
this by computing a-priori's as new track 
reports are received for sub-universes about 
the new track report.  To circumscribe the 
subuniverse, we used weapon platform 
locations (with uncertainties), airbasing, 
INTEL data on aircraft and weapons ranges, 
INTEL platform-weapons capabilities, 

weapons firing rates, and geopolitical 
readiness posture. 

4.5.5 Special Clues 

EWID also uses a variety of 
additional minor clues to further influence 
the probability vectors and reduce 
ambiguity.  These are: 

a.  Effective Radiated Power (ERP) 
INTEL data is used along with 

 
 

Figure 9.  OOB, Fit, and EW Parameters Review & Update.  This figure shows how an operator can review 
OOB knowledge base information in the exact same manner as displaying details about the realtime track file.  In 
this figure, an OOB “track” had been hooked (# 1477) and its radars had been asked for.  These were displayed in 
the scrolling list, “Radars Installed”.  The first entry had been selected by double-clicking, resulting in the “ET 
CRO” display, showing the emitter’s function code and DIA Equipment Code and allowing for display of the 
modes (or intervals if the “track” is realtime.)  The modes are displayed in summary fashion in a scrolling list and 
it is again possible to select a mode for more details, as is shown in “ST CRO”.  This is the exact HMI that is used 
to analyze a realtime track, providing a single paradigm for OOB, near-realtime, and realtime analysis. 
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estimated track range and known sensor 
detection sensitivities using estimates 
sucah as in [vacc]   

b.  NID Platform Operating Ranges 

c.  Platform Operating Range Defaults 

d.  NID salvo size and firing rate 

e.  Best geo-locational estimate 
(JMCIS if available; OB otherwise) 

4.5.6 Real-Time Considerations 

Even with the use of modern 
workstations, EW classification requires the 
use of real-time techniques.  For a ship with 
SLQ-32, WLR-1H, and an active EW 
datalink (e.g., JTIDS EW subnet), future 
ESM track data update rates in the 
neighborhood of 25/sec. can be expected 
although current rates are more like 5/sec. 
maximum.  The primary real-time concern is 
that each input sensor report requires access 
to min/max values for RF, PRI, etc. for 
possibly hundreds of modes/sensor tracks.  
Using standard non-real-time RDBMS SQL 
queries is infeasible even if the database is 
indexed by each parameter min and max 
since the matches still have to be "AND"ed.  
Real-time techniques avoid searching by 
using pre-encoded match maps.  For the EW 

Classification workstation, we implemented 
a method illustrated in  Figure 10.  This 
method uses an index by measured 
parameter into a mode "bitmap" that can 
then be "AND"ed with the other measured 
parameter lookups thereby resulting in a 
bitmap, all of whose entries correspond to 
modes/sensor tracks whose parameter 
ranges include the input report.  The result is 
no searching or sorting -- all such work is 
done ahead of time.  This real-time 
technique is appropriate not only for 
shipboard command and control and ASMD, 
but also for any environment in which there 
are quick react or high data flux 
requirements such as C3I systems and 
aircraft RWR's. 
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Figure 10.  Real-Time EW Library Mode Candidates Retrieval Method 
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