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ABSTRACT 

Cyberspace and Electromagnetic Activities (CEMA) consist of cyberspace operations, electronic warfare, 
and electromagnetic spectrum management operations.  Distributed Data Fusion and Resource 
Management for CEMA (DDFRM-CEMA) is an integrated estimation and sensor/source management 
process that has matured over a series of programs addressing the various functions that have ultimately 
been integrated into a complete analysis process.  The CEMA Data Fusion (DF) Level 0-3 functions make 
inferences from CEMA sensor and source data to objects and events, develops linkages between them, and 
asserts predictions about them.  The Resource Manager (RM) Level 4 DF function exploits an information-
theoretic approach that optimizes data/information collection to satisfy layered Commander’s Critical 
Information Requirements (CCIR) and disambiguate DF hypotheses. This process, called Information 
Based Sensor/Source Management (IBSM), measures information by the expected decrease in uncertainty 
in the value.  It uses a “goal lattice” and sensor/source Applicable Function Table (AFT) to maximize the 
expected information value rate (EIVR) through sensor cues and source requests.  This data-pull scheme is 
essential for CEMA DF where data-push is infeasible, e.g., pushing Packet Captures (PCAPs) would create 
multiply more.  DDFRM-CEMA operations are made semantically consistent by a formal and extensible 
ontology that can go from CEMA modalities to organizational behaviors, intentions, and plans, and whose 
formal structure reinforces mathematically correct relationships.  The ontology represents relationships 
(temporal, whole part, causality, etc.) with which to fuse attack patterns from sensed observations and 
extracted features.  DDFRM-CEMA is considered a unique analytical toolkit/integrated estimation and 
action-taking process that offers distinctive features and benefits to complex problems in the CEMA 
problem spaces. 

Keywords: cyberspace, CEMA, fusion, ontology, resource management, optimization, directed graphs, 
artificial intelligence, IBSM  
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1 OPERATOINAL CONCEPT AND RELEVANCE 
In the early days of cyberspace, DoD, like all organizations, was on its own in detecting, assessing, and 
responding to threats.  Today, the Cybersecurity and Infrastructure Security Agency (CISA), within the 
Department of Homeland Security, operates a warning system that relies on information sharing and 
partnerships with the private sector, other government agencies, and the intelligence community.  For down-
range units, United States Cyber Command (USCYBERCOM) provides deploying units a Cyber Mission 
Team (CMT) and a Cyber Protection Team (CPT), complete with cyber toolkits and mobile clouds that 
monitor CISA and other alerts and take action to fortify and/or remediate the unit if it may be vulnerable to 
the reported activities.  However, in an all-out attack against a down-range unit, the national response may 
be too late or not at all under Denied, Disrupted, Intermittent, and Limited (DDIL) or Anti-Access Area 
Denial (A2/AD) conditions, localized network attack, coordinated enemy Cyber and Electromagnetic 
Activities (CEMA) [1], or attack against specialized military Internet of Things (IoT) / Supervisory Control 
and Data Acquisition (SCADA) equipment for which there is no civilian counterpart.  Further, if the enemy 
is executing a coordinated multi-warfare attack, the CEMA component may be only a small part of the 
overall kill chain whose role and impact may not be immediately apparent, i.e., a clever adversary will 
execute various of the types of CEMA shown in Figure 1 such that each activity remains below an alert 
threshold but in a manner that, aggregated, is a 
significant threat. Hence the military has a 
requirement for organic enemy CEMA 
detection, awareness, and understanding in a 
multi-domain context. 

The mission requirements call for a Data 
Fusion (DF) and Resource Management (RM) 
architecture and algorithms that can produce 
contextual hypotheses that can be integrated 
with other domains in realtime.  This implies 
CEMA hypotheses in the all-domain ontology, 
with mathematically-principled hypotheses 
scores suitable for multi-modal (sensor) and 
multi-node association.  Due to the relatively 
limited manning in tactical units, it must be 
highly automated and trustable.  Because the 
enemy will be covert, the fusion must exhaust 
all sources that could reveal and disambiguate 
hypotheses but, due to the realities of network 
and communications limitations for forward 
units, must pull data selectively and optimally.   

2 HIGH LEVEL DATA FUSION (DF) AND RESOURCE MANAGEMENT (RM) 

FRAMEWORKS  
Core functions of command and control systems are DF and resource management and many tools 
conducting these functions have been developed that could be adapted for CEMA.  At their core, DF 
processes are information-based estimation processes, directed at providing the best-possible mission-critical 
information to support various mission tasks and functions.  (Expansion of the DF process model and its 
levels are described in [2].)  Importantly, effective design of these processes ideally includes various runtime 
adaptation capabilities that adjust the DF processes to real-time contingencies needed to maintain various 
optimality criteria that are embedded in the overarching DF operations.  These adaptive processes may 
include runtime control of certain resources that either support DF operations (such as adaptive sensor and 
source management tuned to optimizing DF estimation algorithms) or, if DF is the core information 

 

Figure 1.  CEMA (from ref [1]) 
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subsystem, DF estimates may trigger actions on certain mission resources such as countermeasures.  The 
system-boundary assessment for DF, a systems-engineering issue, will determine the extent of adaptive 
control-type processes and functions that the DF framework will have in any given application. 

There has been a necessary progression of detection of adversary enemy CEMA from isolated, independent, 
and single-sensors evolving to federated, networked, integrated pattern matching to CEMA Tactics, 
Techniques, and Procedures (TTP).  Associated with this sensor fusion problem is the inexorable increase in 
the quantity, quality, and diversity of sensors and sources about CEMA devices and software.  A new 
application of explainable optimal information theory provides situational awareness having minimal 
uncertainty of predicted CEMA vulnerabilities given the implemented hardware, software, mitigations, and 
maneuvers.  As an optimized process recording its own decisions, “why” means to improve the situational 
awareness as an explainable goal, and “how” means which architecture is proposed.  The proposed 
architecture, evolving from a kill-chain system-of-systems approach, enables an optimization scheme that 
can arbitrate among the known evidence and information needs for detecting interdependent network and 
application CEMA-attack patterns and can arbitrate among the vulnerabilities and mitigations that are known 
to be applicable for a given mission use case or vignette.   

We see CEMA requirements as very tactically-oriented and involved with balancing ISR, EW, and CEMA 
within missions.  This would imply that DF processes should be associable to the various functions of the 
Kill Chain.  DF functional support to full Kill Chain processes are as nominated in Figure 2 below, inspired 
by correlating DF functions (shown in orange boxes) to the six steps of the Joint Targeting Cycle  [3].  The 
yellow boxes indicate functions having interdependencies with DF functions and in certain designs can be 
co-developed in a synergistic approach. 

In broad terms, such DF capabilities need to support assessment of hostile mission and intent, develop 
targeting knowledge adequate to enable optimal weapon assignment, support weapon operations e.g., to 
possibly provide Electromagnetic (EM) maneuver or EW actions to weaponry, and as well to support Battle 

 

Figure 2.  Functional Correlation of DF Functions to the Joint Targeting and Engagement Cycle (background 
from ref [3]) 
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Damage Assessment (BDA) and possible re-targeting.  Extended capabilities of these types will require not 
only a layered DF framework but one that is adaptive in various ways, and managed in a hierarchical scheme, 
focused primarily on achieving mission effectiveness.  Thus, we are proposing a DF framework that has 
three fusion layers that enable layered estimation for: operational mission situation assessment, target 
knowledge elaboration, and weapon employment and BDA support.   

Our DF framework for precision targeting mission applications is shown in Figure 3.  Meta-control of these 
layered fusion processes is managed by a layered scheme of adaptive control functions as shown in Figure 
3.  At the top or mission level, a mission process controller (purple box [1]), that manages the interplay of 
the layered fusion processes -- boxes [A], [B], and [C] shown in Figure 3. Exploitation of fusion process 
interdependencies is a topic that our team has studied previously (e.g., [4]) and has developed frameworks 
for (e.g., [5]); this is an important factor affecting adaptive designs.  Layered process control also involves 
adaptive sensor management that exploits any agilities in ISR sensors and sources for not only space-time 
(“pointing”) management but also any other sensor controls that improves organic collection of tactical 
situational data.  As sensor / source data is collected, it needs to be intelligently fed to the correct fusion 
layer; this is enabled by an input manager controller. Thus, our framework has two other control loops -- 
purple boxes [2] and [3] that manage sensor operations and data feed operations for ingestion, storage, and 
processing of sensor data.  Notice too that the layered framework should be integrated with any/all mission 
planning functions as shown in the green boxes of Figure 3.  Thus, the framework is very hospitable to such 
future enhancement. 

Throughout this framework, we see a wide variety of possible insertion points for artificial intelligence (AI), 
machine learning (ML), and/or deep learning (DL) technologies.  Among these could be AI/ML/DL for Data 
Association (DA) functions (e.g., see [6] ), AI/ML/DL techniques for ensemble classification (e.g., see [7], 
[8], and [9]), and even for target tracking operations (e.g., see [10] and [11]).  Our view here however 
recommends caution in insertion or exploitation of AI/ML/DL technologies, as CEMA missions have 
properties that can constrain the use of these technologies such as: 

 High OPTEMPO that constrains real-time explanation of opaque outputs to CEMA operators, as 
“explanation” capabilities are proving crucial to effective use of AI/ML/DL [12] 

 Specialized testing and evaluation (T&E) during development that assures no or very limited 
occurrences of unintended consequences 

 

Figure 3.  Conceptual/Functional Layered Fusion Framework 
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 Assured Rule of Engagement (ROE) - compliant behaviors that are always quantifiable, recordable, 
and hence repeatable processes 

We point these out in the context of good systems engineering and careful tradeoffs that we see as important 
for use of these methods.   

3 DDFRM-CEMA ARCHITECTURE 
With these general DF architecture principles in mind, the DDFRM-CEMA architecture shown in Figure 4 
was engineered as a partition of the various functions into components which are required to manage the 
sensor and data source resources and to log the explanation of why each management decision was made.  It 
also enables machine learning applied to assist the internal operation in a Human-on-the-Loop (HOL) system 
or applied to training an attack pattern recognizing convolutional neural network.   

Its major components are: 

 CEMA Ontology.  DF and RM operate on a formal and extensible ontology that can go from CEMA 
modalities to real-world organizational behaviors, intents, and plans.  It was developed under 
international defense cooperation with a formal structure that enforces mathematically correct 
relationships.  The ontology represents relationships (temporal, whole part, causality, etc.) with 
which to fuse attack patterns from sensed attack steps or phases.  It employs a super-subtype (SST) 
tree of a-priori common types of CEMA techniques that is used in generating DF hypotheses and 
another SST tree of CEMA techniques indicating vulnerabilities and mitigations and maneuvers. 

 Distributed Data Fusion.  CEMA DF uses Directed Acyclic Relationship Graphs (DARG) to make 
inferences (hypotheses and likelihood ratios) from sensor and data sources to objects and events and 
linkages-between and predictions-about them.  An actor template tool based on the CEMA ontology 
is used to predict attack behavior candidates.  Instantiated A-Box graphs represent actors in CEMA 

 

Figure 4.  DDFRM-CEMA Architecture Overview 
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hypotheses as a Bayesian situational network containing candidate threats and behaviors and their 
associated likelihood ratios. 

 Resource Management.  Information Based Sensor/Source Management (IBSM), a resource 
optimization technology, adapts the DF system to CEMA sensors and data sources using a situation 
dependent lattice of mission goals valuing optimal information-gathering observations and 
indicators.  It effectively combines competing, independent, orthogonal vulnerabilities, mitigations, 
and maneuvers into a situational awareness value for tasking competing sensors and data sources.  
IBSM enables a data-pull data scheme, very effective for large volume CEMA sensor datasets that 
can be impractical to push, e.g., PCAPs – pushing PCAPs creates more PCAPs. 

3.1 CEMA Ontology 

Involved in this synthesis challenge in the case of CEMA analytics are the many data layers typically 
considered in CEMA contexts, for example, as described in Joint Pub 2-03 [13] and shown in Fig. 1.  As can 
be seen, geospatial data is prevalent in the lower layers while the upper layers tend to be textual.  Other 
diagrams Joint Pub 2-03 Figures IV-4 and in Joint Pub 3-0 [14Figure IV-1 illustrate the layers from a real-
world or ontological perspective.  Entities in these upper layers often are from categories drawn from the 
PMESII-T [15], DIME [16], and/or ASCOPE [17] taxonomies.  These layers and taxonomies are interrelated 
in complex ways (see, e.g., [18, 19]). 

It is important to note that these data layers are “disparate”, meaning that they are essentially different in 
kind and thus they do not easily allow 
comparison or synthesis.  Cyberspace 
introduces additional layers, whether ISO 
7-layer or logical / personal / supervisory 
layers.  There are three major challenges 
to be overcome in achieving efficient and 
effective synthesis of these data.  First, 
operating on the raw, disparate data, is an 
alignment process that normalizes all 
data to a common reference.  This process 
can involve several steps from coordinate 
conversions to data translations, 
uncertainty characterization, and 
normalization, as well as developing an 
ontology concordance that ultimately 
prepares the data for subsequent 
operations.  The output of these 
operations is normalized data grounded in 
a common reference frame. 

The next process of association addresses 
the challenge of associating the still-
disparate but normalized data so that 
inter-layer associative relevance and 
relations can be computed.  The output 
here results in inter-layer associations 
among the data.   At this point, all of the 
data has been operated on to create a 
complete evidential picture of the 
operational domain.  The next algorithm 
set are exploitation algorithms that allow 

 

Figure 5.  Geospatial Intelligence in Joint Operations (adapted 
from ref [13]) 
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C2 and tactically-significant queries to 
be posed to this integrated evidence in 
order to extract/assess the existence of 
critical situational or CCIR inferable 
from the composite evidence.   

An ontology or data model represents 
the concepts in these layers and inter-
relates them.  What ontology can add 
over an everyday data model is formal 
foundational and common pattern 
layers.  Formal means the CEMA 
ontology has a mathematical 
foundation as illustrated in Figure 6.  Our CEMA ontology implements high order type theory, is four-
dimensional [20], and mereotopologic [21].  It is extensional, using physical existence as its criterion for 
identity. Extensional ontology is well suited to managing change over time and identifying elements with a 
degree of precision that is not possible using names alone.  For DF, this supports re-discovery of lost tracks 
and representation of their evolution over time including prediction of possible future states. 

The CEMA ontology links cyberspace data standards shown in Figure 7 at the lower layers to behavioral 
patterns at the PMESSI-T, DIME, or ASCOPE ontology layers.   

3.2 CEMA Distributed Data Fusion  

DF’s role in DDFRM-CEMA is as a hypothesis generator and rigorous mathematical function service within 
a larger CEMA data management and C4ISR system.  The DF portion of DDFRM-CEMA produces 
indications and warnings of CEMA attack behavior hypotheses to support CEMA situational understanding 
(SU), Offensive Cyberspace Operations (OCO) planning, and Defensive Cyberspace Operations (DCO) 
responses. It is architected following the Joint Directors of Laboratories (JDL) fusion levels, and uses formal 
ontology for the T-Box (types) and A-Box (actuals).  It computes likelihood ratios of attack behavior 
hypotheses.  Inference links can be visualized in a graph database tool that allows customized viewing 
tailored to operator requirements.  The likelihood ratios can be thresholded to give operators control over 
display clutter.  It would fit in a hybrid Deep Learning (DL) architecture as a bootstrap trainer, results 
validator against adversarial AI, as an explainer, or for rapid data triage. 

 

Figure 6.  Foundation Ontology’s Three Principal Things  

 

Figure 7.  Examples of Cyberspace Data Schema, Reference Standards, and Message Formats 
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The JDL fusion levels focusing-on CEMA are shown in Figure 8.  The principal type of inference in CEMA 
DF is Directed Attributed Relational Graphs (DARG) and associated graph association methods (see, e.g., 
[22, 23,  24]) operating off the CEMA T-Box ontology.  Graphical-based analysis views the various layers 
in the CEMA data as graphs with nodal and edge-wise relationships.  Figure 9 illustrates the application to 
the multiple geospatial data layers.  In the upper part of the figure is a PMESII-T diagram from Joint Pub 3-
0 showing that the disparate kinds of data, or layers, can have linkages.  The lower part of the figure is an 
illustration of how this is done in a DARG.  It shows the associable observed activity of two human nodes 
to a truck, fertilizer, and factory data, matches a template pattern (query) for a bomb attack.  One way to 
think of DARGs is as enhanced 1st order type ontologies for which there is considerable formal foundation, 
e.g., [25].  The DARG template is equivalent to a 1st order type pattern, expressible in Descriptive Logic as 

 

Figure 8.  JDL Fusion Levels Focusing on CEMA 
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a "terminological component" (T-Box) in a 
knowledge base [26].  The DARG evidential 
data (lower and right part of Figure 9) is the 
assertion component" (A-Box).  A DARG could 
be represented in web ontology language (OWL) 
with properties expressing the DARG’s 
attributes.  Existing DARG software was 
developed under Multidisciplinary University 
Research Initiative (MURI).  DARG takes the 
next step in this AI state-of-practice, not just 
enabling representation of multi-layered data, 
but also implementing algorithms for multi-layer 
graph association and query-matching to 
associated evidential data [27].  The analytical 
processes involve representation of layered data, 
cross-layer (graph) association, and associated 
evidence-to-CCIR queries by graph-matching.  
In recent work, an inexact subgraph matching 
algorithm was developed as a variation of the 
subgraph isomorphism approach for situation 
assessment [28, 29, 30, 31]. This procedure can 
be enhanced to represent inaccurate observations 
or data estimates, and inaccurate structural 
representations of a state of interest, thus 
accounting for the various uncertainties in 
multilayer data. Various probabilistic and 
possibilistic uncertainty representations, 
transformations between representations and 
methods for establishing similarities between 
representations have been assessed. 

In Figure 10 we discuss a simple graph association example where two DARGs G1 and G2, share some 
similarities (common nodes and relationships (arcs)); Figure 10 (B) shows the common subgraphs between 
the two graphs. The last one Gsg4 is defined as the “maximum common subgraph (MCG)“. Once we identify 
the MCG, we can synthesize the information in the two graphs as in Figure 10 (C). Identifying the MCG is 
a challenging problem, especially when the elemental nodes don’t match perfectly (as shown by unique 
colors in Figure 10.) We are working on new methods for the fast association of graphs and build on our 
considerable past work in these complex technical areas. 

 

Figure 9.  Template Graph Association across Disparate 
Data (top from ref [14]) 

 

Figure 10.  Graph Association: (A) Two graphs G1 and G2; (B) Common Graphs; (C) Merged Graph (from ref 
[27]) 
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3.3 DDFRM-CEMA Resource Management  

The scheme for RM is called Information Based Sensor/Source Management (IBSM).  IBSM is an 
innovative one-of-a-kind holistic information satisficing solution to multi-platform, heterogeneous, and real-
time data and source management.  As a Level 4 DF process, IBSM measures information by the expected 
decrease in uncertainty in the CCIR value and the time to acquire the information.  As shown in Figure 11, 
IBSM adapts the DDFRM-CEMA system to the situation and sensor network using a situation dependent 
lattice of information goals -- such as to disambiguate fusion hypotheses -- against optimal information-
gathering actions. A key element of the IBSM adaptation process design is a "goal lattice" which is initialized 
with multiple relative mission goals. It is closed loop, indirect, and achieves context sensitive control through 
the use of interacting, mission-oriented multi-goal lattice with human-on-the-loop (HOL) that can 
algorithmically arbitrate across competing goals for optimal control of data and information sources.   IBSM 
translates changing information needs and goals into sensor and source requests to maximize the Expected 
Information Value Rate (EIVR).  IBSM cues sensors to collect additional data (e.g., detailed logs) and pulls 
information from data sources (e.g., Big Data Platform) that could be impractical to push to the node (e.g., 
PCAPs).   

The resulting system is predicated on viewing sensors (including data/information sources) as an input 
channel to a probabilistic model of the world.  While Shannon showed how to encode channel data, he was 
notably indifferent about what was sent through the channel.  IBSM assumes that the individual sensors are 
operating locally as part of a large data enterprise and that the information (data with value) through the 

Figure 11  Information Based Sensor/source Management (IBSM) block diagram. 
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channel can be maximized by deciding what data should be acquired.  In this context, information is 
measured by the expected decrease in uncertainty in our situational assessment weighted by its mission value 
and the time to acquire the information of potential adversary CEMA.   

The IBSM scheme has been extensively studied and has been selectively applied in research programs [32]. 

4 SUMMARY AND NEXT STEPS  
Parts of the DDFRM-CEMA have been developed under various projects so the software is research grade 
and not integrated as a system described herein.  The team is looking for opportunities to productionize and 
integrate the DDFRM-CEMA components.  As well, there are several enhancements we have thought about, 
illustrated in Figure 12.   

a. Automated Knowledge Base Statistical Learning.  In the first picture, the DF’s knowledge base priors 
(e.g., p(H0), p(H1), normalcy statistics, attack pattern step transition probabilities and statistics) are 
learned and adapted in realtime by treating hypotheses confirmations or disconfirmations as 
accumulations as new samples.  A Kalman-like filter could enable their adaptation for temporal drift 
or process changes over time using social process models akin to process models of maneuvering 
aircraft.. 

b. Automated Attack Pattern Learning and Correlation.  Types of Observations and Features are 
clustered to form new provisional Attack Pattern Steps (pAPS).  These pAPS and existing APS 
accumulate into new or variants of existing Attack Patterns (AP). 

c. Cueing from and Explaining Anomaly Detec.  The AI detects an anomaly but cannot understand or 
explain it.  IBSM could pull Observations and Features and cue the DARG to see if weak hypotheses 
that could explain the anomaly could be strengthened.  This would be an example of explainable AI. 

d. Disambiguation with Deep Analytics.  An assistant to the DF process could conduct deeper analysis 
of fusion hypotheses ambiguities.  For example, it could use Power Spectral Densities (PSD) 
developed from the data lake to understand if there were spurious spectra in the knowledge base 
statistics that could separate the hypotheses. 
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Figure 12.  Ideas for further work 
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5 GLOSSARY 
A2/AD  Anti-Access Area Denial 
AMHS Automated Message Handling System 
AOB Air Order of Battle 
ATT&CK™ Adversarial Tactics, Techniques & Common Knowledge (ATT&CK) 
CAPEC™ Common Attack Pattern Enumeration and Classification* 
CCIR Commander’s Critical Information Requirements 
CISA Cybersecurity and Infrastructure Security Agency 
CMT Cyber Mission Team 
COP Common Operational Picture 
CPT Cyber Protection Team 
CVE Common Vulnerabilities and Exposures  
CWE™ Common Weakness Enumeration 
CyboX™ Cyber Observable eXpression 
DCGS Distributed Common Ground Station 
DDIL  Denied, Disrupted, Intermittent, and Limited 
EMOE Electromagnetic Operating Environment 
EMS Electromagnetic Spectrum 
EOB Electronic Order of Battle 
GOB Ground Order of Battle 
IFTU In-Flight Target Update 
JFRL Joint Frequency Restrictions List 
JSD Joint Spectrum Database 
LOC Line of Communication 
MAEC™  Malware Attribute Enumeration and Characterization 
MSR Main Supply Route 
NGO Non-Governmental Organization 
NOB Naval Order of Battle 
PCAP Packet Capture 
SDR Spectrum Data Registry 
SST Super-SubType 
STIX™ Structured Threat Information eXpression 
TAXII™ Trusted Automated Exchange of Intelligence Information 
USMTF United States Message Text Format 
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